Denoising UWB Radar Data for Human Activity Recognition Using Convolutional Autoencoders

被引:7
作者
Lafontaine, Virgile [1 ]
Bouchard, Kevin [1 ]
Maitre, Julien [1 ]
Gaboury, Sebastien [1 ]
机构
[1] Univ Quebec Chicoutimi, Lab Intelligence Ambiante Reconnaissance Act LIARA, Saguenay, PQ G7H 2B1, Canada
来源
IEEE ACCESS | 2023年 / 11卷
基金
加拿大自然科学与工程研究理事会;
关键词
Activity of daily living; data filtering; data processing; deep learning; human activity recognition; unsupervised learning; UWB radars; SENSORS; MODEL;
D O I
10.1109/ACCESS.2023.3300224
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Human Activity Recognition (HAR) is one of the most popular research topics thanks to its usefulness in providing targeted, meaningful assistance to older adults. Because of the aging of the population in first-world countries, it becomes increasingly important to find innovative solutions that reduce risks associated with aging-in-place policies. HAR proposes solutions that are based on Ambient Intelligence (AmI) to alleviate those risks. In this work, we exploited three UWB radars to recognize 14 activities performed by 19 participants in a prototype smart-home apartment. The main contribution of this paper is UWB radar data cleaning on a practical dataset. The UWB radar data has been filtered using an unsupervised deep convolutional autoencoder (CNN-AE) that learns background noise from the data. This filtering method is compared to the unfiltered data using a Convolutional Neural Network (CNN) classifier in a Leave-One-Subject-Out (LOSO) classification. Performances attest that the CNN-AE unsupervised filtering is efficient for HAR. In addition, we tested the generalization potential of this architecture when the dataset is comprised of a lower number of participants (1, 5, 10, and all 19 participants). Generalization in HAR is difficult as the results show the importance of data quantity and number of subjects. We obtained 69.9% top-1 accuracy when using our filtering architecture compared to 48.4% without it. To conclude, we show that an unsupervised CNN-AE can efficiently filter and generalize UWB radar data in a HAR setting while providing easier learning constraints and implementation on a practical dataset.
引用
收藏
页码:81298 / 81309
页数:12
相关论文
共 50 条
  • [31] Segmented convolutional gated recurrent neural networks for human activity recognition in ultra-wideband radar
    Du, Hao
    Jin, Tian
    He, Yuan
    Song, Yongping
    Dai, Yongpeng
    NEUROCOMPUTING, 2020, 396 (396) : 451 - 464
  • [32] Semi-supervised Learning for Human Activity Recognition Using Adversarial Autoencoders
    Balabka, Dmitrijs
    UBICOMP/ISWC'19 ADJUNCT: PROCEEDINGS OF THE 2019 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING AND PROCEEDINGS OF THE 2019 ACM INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTERS, 2019, : 685 - 688
  • [33] Deformable Convolutional Networks for Multimodal Human Activity Recognition Using Wearable Sensors
    Xu, Shige
    Zhang, Lei
    Huang, Wenbo
    Wu, Hao
    Song, Aiguo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [34] Human Activity Recognition Using 2D Convolutional Neural Networks
    Gholamrezaii, Marjan
    Almodarresi, Seyed Mohammad Taghi
    2019 27TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE 2019), 2019, : 1682 - 1686
  • [35] Deep Convolutional Neural Networks for Human Activity Recognition with Smartphone Sensors
    Ronao, Charissa Ann
    Cho, Sung-Bae
    NEURAL INFORMATION PROCESSING, ICONIP 2015, PT IV, 2015, 9492 : 46 - 53
  • [36] Human Activity Recognition Based on Acceleration Data From Smartphones Using HMMs
    Iloga, Sylvain
    Bordat, Alexandre
    Le Kernec, Julien
    Romain, Olivier
    IEEE ACCESS, 2021, 9 : 139336 - 139351
  • [37] Deep Learning-Based Human Recognition Through the Wall using UWB radar
    Assawaroongsakul, Pongpol
    Khumdee, Mawin
    Phasukkit, Pattarapong
    Houngkamhang, Nongluck
    16TH INTERNATIONAL JOINT SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND NATURAL LANGUAGE PROCESSING (ISAI-NLP 2021), 2021,
  • [38] Direction-Independent Human Activity Recognition Using a Distributed MIMO Radar System and Deep Learning
    Waqar, Sahil
    Muaaz, Muhammad
    Patzold, Matthias
    IEEE SENSORS JOURNAL, 2023, 23 (20) : 24916 - 24929
  • [39] A Data Augmentation Method for Human Activity Recognition Based on mmWave Radar Point Cloud
    Wang, Zhiming
    Jiang, Dechen
    Sun, Bin
    Wang, Yong
    IEEE SENSORS LETTERS, 2023, 7 (05)
  • [40] Human Activity Recognition Based on Deep Learning and Micro-Doppler Radar Data
    Tan, Tan-Hsu
    Tian, Jia-Hong
    Sharma, Alok Kumar
    Liu, Shing-Hong
    Huang, Yung-Fa
    SENSORS, 2024, 24 (08)