Trustworthy journalism through AI

被引:21
|
作者
Opdahl, Andreas L. [1 ]
Tessem, Bjornar [1 ]
Dang-Nguyen, Duc-Tien [1 ]
Motta, Enrico [1 ]
Setty, Vinay [3 ]
Throndsen, Eivind [2 ,4 ]
Tverberg, Are [5 ]
Trattner, Christoph [1 ]
机构
[1] Univ Bergen, Bergen, Norway
[2] Open Univ, Milton Keynes, England
[3] Univ Stavanger, Stavanger, Norway
[4] Schibsted, Oslo, Norway
[5] TV 2, Bergen, Norway
关键词
Artificial Intelligence; Journalism; News Production; Trustworthiness; REPRESENTATION; ARCHITECTURE; LEGITIMACY; CHATGPT;
D O I
10.1016/j.datak.2023.102182
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quality journalism has become more important than ever due to the need for quality and trustworthy media outlets that can provide accurate information to the public and help to address and counterbalance the wide and rapid spread of disinformation. At the same time, quality journalism is under pressure due to loss of revenue and competition from alternative information providers. This vision paper discusses how recent advances in Artificial Intelligence (AI), and in Machine Learning (ML) in particular, can be harnessed to support efficient production of high-quality journalism. From a news consumer perspective, the key parameter here concerns the degree of trust that is engendered by quality news production. For this reason, the paper will discuss how AI techniques can be applied to all aspects of news, at all stages of its production cycle, to increase trust.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A data-centric approach for ethical and trustworthy AI in journalism
    Dierickx, Laurence
    Opdahl, Andreas Lothe
    Khan, Sohail Ahmed
    Linden, Carl-Gustav
    Guerrero Rojas, Diana Carolina
    ETHICS AND INFORMATION TECHNOLOGY, 2024, 26 (04)
  • [2] Simion and Kelp on trustworthy AI
    Carter J.A.
    Asian Journal of Philosophy, 2 (1):
  • [3] An AI Harms and Governance Framework for Trustworthy AI
    Peckham, Jeremy B.
    COMPUTER, 2024, 57 (03) : 59 - 68
  • [4] Trustworthy AI: AI made in Germany and Europe?
    Hirsch-Kreinsen, Hartmut
    Krokowski, Thorben
    AI & SOCIETY, 2024, 39 (06) : 2921 - 2931
  • [5] AI application in journalism: ChatGPT and the uses and risks of an emergent technology
    Gutierrez-Caneda, Beatriz
    Vazquez-Herrero, Jorge
    Lopez-Garcia, Xose
    PROFESIONAL DE LA INFORMACION, 2023, 32 (05):
  • [6] MLOps as Enabler of Trustworthy AI
    Billeter, Yann
    Denzel, Philipp
    Chavarriaga, Ricardo
    Forster, Oliver
    Schilling, Frank-Peter
    Brunner, Stefan
    Frischknecht-Gruber, Carmen
    Reif, Monika
    Weng, Joanna
    2024 11TH IEEE SWISS CONFERENCE ON DATA SCIENCE, SDS 2024, 2024, : 37 - 40
  • [7] Trustworthy AI for safe medicines
    Stegmann, Jens-Ulrich
    Littlebury, Rory
    Trengove, Markus
    Goetz, Lea
    Bate, Andrew
    Branson, Kim M.
    NATURE REVIEWS DRUG DISCOVERY, 2023, 22 (10) : 855 - 856
  • [8] Trustworthy AI: A Computational Perspective
    Liu, Haochen
    Wang, Yiqi
    Fan, Wenqi
    Liu, Xiaorui
    Li, Yaxin
    Jain, Shaili
    Liu, Yunhao
    Jain, Anil
    Tang, Jiliang
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2023, 14 (01)
  • [9] Towards Trustworthy AI in Dentistry
    Ma, J.
    Schneider, L.
    Lapuschkin, S.
    Achtibat, R.
    Duchrau, M.
    Krois, J.
    Schwendicke, F.
    Samek, W.
    JOURNAL OF DENTAL RESEARCH, 2022, 101 (11) : 1263 - 1268
  • [10] Trustworthy AI: Industry-Guided Tooling of the Methods
    Chihani, Zakaria
    PROCEEDINGS 2024 IEEE/ACM 3RD INTERNATIONAL CONFERENCE ON AI ENGINEERING-SOFTWARE ENGINEERING FOR AI, CAIN 2024, 2024, : 245 - 246