Unmixing biological fluorescence image data with sparse and low-rank Poisson regression

被引:6
作者
Wang, Ruogu [1 ]
Lemus, Alex A. [2 ,3 ]
Henneberry, Colin M. [2 ,3 ]
Ying, Yiming [1 ,4 ]
Feng, Yunlong [1 ,4 ]
Valm, Alex M. [2 ,3 ,5 ]
机构
[1] SUNY Albany, Dept Math & Stat, Albany, NY 12222 USA
[2] SUNY Albany, Dept Biol, Albany, NY 12222 USA
[3] SUNY Albany, RNA Inst, Albany, NY 12222 USA
[4] SUNY Albany, Dept Math & Stat, 1400 Washington Ave, Albany, NY 12222 USA
[5] SUNY Albany, Dept Biol Sci, 1400 Washington Ave, Albany, NY 12222 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
SEPARATION;
D O I
10.1093/bioinformatics/btad159
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Multispectral biological fluorescence microscopy has enabled the identification of multiple targets in complex samples. The accuracy in the unmixing result degrades (i) as the number of fluorophores used in any experiment increases and (ii) as the signal-to-noise ratio in the recorded images decreases. Further, the availability of prior knowledge regarding the expected spatial distributions of fluorophores in images of labeled cells provides an opportunity to improve the accuracy of fluorophore identification and abundance.Results: We propose a regularized sparse and low-rank Poisson regression unmixing approach (SL-PRU) to deconvolve spectral images labeled with highly overlapping fluorophores which are recorded in low signal-to-noise regimes. First, SL-PRU implements multipenalty terms when pursuing sparseness and spatial correlation of the resulting abundances in small neighborhoods simultaneously. Second, SL-PRU makes use of Poisson regression for unmixing instead of least squares regression to better estimate photon abundance. Third, we propose a method to tune the SL-PRU parameters involved in the unmixing procedure in the absence of knowledge of the ground truth abundance information in a recorded image. By validating on simulated and real-world images, we show that our proposed method leads to improved accuracy in unmixing fluorophores with highly overlapping spectra.Availability and implementation: The source code used for this article was written in MATLAB and is available with the test data at https://github.com/WANGRUOGU/SL-PRU.
引用
收藏
页数:7
相关论文
共 17 条
[1]   Quantum Dots in Cell Biology [J].
Barroso, Margarida M. .
JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY, 2011, 59 (03) :237-251
[2]   Enhancing Sparsity by Reweighted l1 Minimization [J].
Candes, Emmanuel J. ;
Wakin, Michael B. ;
Boyd, Stephen P. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (5-6) :877-905
[3]   PHOTOMULTIPLIER NOISE STATISTICS [J].
COATES, PB .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1972, 5 (05) :915-&
[4]  
Dias JM, 2010, INVESTIGACAO, P1, DOI 10.14195/978-989-26-0193-9
[5]   Simultaneously Sparse and Low-Rank Abundance Matrix Estimation for Hyperspectral Image Unmixing [J].
Giampouras, Paris V. ;
Themelis, Konstantinos E. ;
Rontogiannis, Athanasios A. ;
Koutroumbas, Konstantinos D. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (08) :4775-4789
[6]   Sparse Unmixing of Hyperspectral Data [J].
Iordache, Marian-Daniel ;
Bioucas-Dias, Jose M. ;
Plaza, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (06) :2014-2039
[7]   Collaborative Sparse Regression for Hyperspectral Unmixing [J].
Iordache, Marian-Daniel ;
Bioucas-Dias, Jose M. ;
Plaza, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (01) :341-354
[8]   Total Variation Spatial Regularization for Sparse Hyperspectral Unmixing [J].
Iordache, Marian-Daniel ;
Bioucas-Dias, Jose M. ;
Plaza, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (11) :4484-4502
[9]   Fluorescence microscopy [J].
Lichtman, JW ;
Conchello, JA .
NATURE METHODS, 2005, 2 (12) :910-919
[10]   Generalized Nonconvex Nonsmooth Low-Rank Minimization [J].
Lu, Canyi ;
Tang, Jinhui ;
Yan, Shuicheng ;
Lin, Zhouchen .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :4130-4137