Combining Highly Dispersed Amorphous MoS3 with Pt Nanodendrites as Robust Electrocatalysts for Hydrogen Evolution Reaction

被引:10
|
作者
Guo, Ke [1 ]
Zheng, Jinyu [1 ]
Bao, Jianchun [1 ]
Li, Yafei [1 ]
Xu, Dongdong [1 ]
机构
[1] Nanjing Normal Univ, Jiangsu Collaborat Innovat Ctr Biomed Funct Mat, Sch Chem & Mat Sci, Jiangsu Key Lab New Power Batteries, Nanjing 210023, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
electrocatalysis; hydrogen evolution reaction; molybdenum sulfide; ultrathin nanodendrites; ACTIVE EDGE SITES; THIOMOLYBDATE; CATALYST;
D O I
10.1002/smll.202208077
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Surface modification of electrocatalysts to obtain new or improved electrocatalytic performance is currently the main strategy for designing advanced nanocatalysts. In this work, highly dispersed amorphous molybdenum trisulfide-anchored Platinum nanodendrites (denoted as Pt-a-MoS3 NDs) are developed as efficient hydrogen evolution electrocatalysts. The formation mechanism of spontaneous in situ polymerization MoS42- into a-MoS3 on Pt surface is discussed in detail. It is verified that the highly dispersed a-MoS3 enhances the electrocatalytic activity of Pt catalysts under both acidic and alkaline conditions. The potentials at the current density of 10 mA cm(-2) (eta(10)) in 0.5 m sulfuric acid (H2SO4) and 1 m potassium hydroxide (KOH) electrolyte are -11.5 and -16.3 mV, respectively, which is significantly lower than that of commercial Pt/C (-20.2 mV and -30.7 mV). This study demonstrates that such high activity benefits from the interface between highly dispersed a-MoS3 and Pt sites, which act as the preferred adsorption sites for the efficient conversion of hydrion (H+) to hydrogen (H-2). Additionally, the anchoring of highly dispersed clusters to Pt substrate greatly enhances the corresponding electrocatalytic stability.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] MoS2 supported on Er-MOF as efficient electrocatalysts for hydrogen evolution reaction
    Liao, Jianming
    Xue, Zhenhong
    Sun, Hai
    Xue, Fengjuan
    Zhao, Zhenxin
    Wang, Xiaoxue
    Dong, Wei
    Yang, Daxiang
    Nie, Ming
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 898
  • [32] Ni nanodendrites prepared by a low-temperature process as electrocatalysts for hydrogen evolution reaction in alkaline solution
    Yuan, Fei
    Wang, Shuo
    Liang, Kun
    Yang, Guangxue
    Qin, Jiaheng
    Gao, Jian
    Ma, Jiantai
    MOLECULAR CATALYSIS, 2021, 516
  • [33] Amorphous-crystalline porous ruthenium selenide as highly efficient electrocatalysts for alkaline hydrogen evolution
    Zhao, Jingjing
    Guo, Yanna
    Li, Shuangjun
    Wang, Jiaqi
    Liu, Kaihong
    Dai, Lijuan
    Dai, Ying
    Jiang, Bo
    Li, Hexing
    CHEMICAL ENGINEERING JOURNAL, 2024, 485
  • [34] Noble Metal Phosphides: Robust Electrocatalysts toward Hydrogen Evolution Reaction
    Guo, Bingrong
    Wen, Xinxin
    Xu, Li
    Ren, Xiaoqian
    Niu, Siqi
    Yangcheng, Ruixue
    Ma, Guoxin
    Zhang, Junchao
    Guo, Ying
    Xu, Ping
    Li, Siwei
    SMALL METHODS, 2024, 8 (10)
  • [35] MoS2 nanoflower incorporated with Au/Pt nanoparticles for highly efficient hydrogen evolution reaction
    Li, Mengyao
    Kuo, Yu-Chieh
    Chu, Xueze
    Chu, Dewei
    Yi, Jiabao
    EMERGENT MATERIALS, 2021, 4 (03) : 579 - 587
  • [36] MoS2 nanoflower incorporated with Au/Pt nanoparticles for highly efficient hydrogen evolution reaction
    Mengyao Li
    Yu-Chieh Kuo
    Xueze Chu
    Dewei Chu
    Jiabao Yi
    Emergent Materials, 2021, 4 : 579 - 587
  • [37] Triangle nanowall arrays of ultrathin MoS2 nanosheets vertically grown on Co-Fe bimetallic disulfide as highly efficient electrocatalysts for hydrogen evolution reaction
    Yu, Zihuan
    Wang, Chaonan
    Guo, Shaoshi
    Yao, Huiqin
    Liang, Zupei
    Liu, Rong
    Shi, Keren
    Li, Cheng
    Ma, Shulan
    ELECTROCHIMICA ACTA, 2022, 403
  • [38] Amorphous nickel/cobalt tungsten sulfide electrocatalysts for high-efficiency hydrogen evolution reaction
    Yang, Lun
    Wu, Xinglong
    Zhu, Xiaoshu
    He, Chengyu
    Meng, Ming
    Gan, Zhixing
    Chu, Paul K.
    APPLIED SURFACE SCIENCE, 2015, 341 : 149 - 156
  • [39] Highly Porous Materials as Tunable Electrocatalysts for the Hydrogen and Oxygen Evolution Reaction
    Ledendecker, Marc
    Clavel, Guylhaine
    Antonietti, Markus
    Shalom, Menny
    ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (03) : 393 - 399
  • [40] Atomically dispersed Pt-O coordination boosts highly active and durable acidic hydrogen evolution reaction
    Zhu, Yin'an
    Luo, Yi
    Yao, Jia
    Dai, Weiji
    Zhong, Xu
    Lu, Tao
    Pan, Ye
    CHEMICAL ENGINEERING JOURNAL, 2022, 440