Ultra-Broadband, Tunable, and Transparent Microwave Meta-Absorber Using ITO and Water Substrate

被引:34
作者
Ge, Jiahao [1 ,2 ,3 ]
Zhang, Yaqiang [1 ,3 ]
Li, Haonan [1 ,2 ,3 ]
Dong, Hongxing [1 ,3 ,4 ]
Zhang, Long [1 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Key Lab Mat High Power Laser, Shanghai 201800, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Hangzhou 310024, Peoples R China
[4] CAS Ctr Excellence Ultraintense Laser Sci, Shanghai 201800, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
metasurface absorbers; ultra-broadband microwave absorption; dynamic tunability; optical transparency; WIDE-BAND; OPTICALLY TRANSPARENT; FERRITE;
D O I
10.1002/adom.202202873
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Integrating broadband absorption, dynamic tunability, and high optical transparency into a single microwave absorber remains a crucial challenge. Here, an ultra-broadband, tunable, and transparent microwave meta-absorber comprising double-layer indium tin oxide resonant patterns and a water-based substrate is theoretically presented and experimentally demonstrated. Experimental measurements indicate that the designed meta-absorber can achieve over 90% absorption in an ultra-broadband frequency range of 12.49-98.21 GHz with a relative bandwidth of 154.9%, while the average optical transmittance is 60.49%. In addition, a multiple reflections interference model is employed to elucidate the physical mechanisms of the ultra-broadband absorber. Furthermore, its absorption performance can be reversibly switched between ultra-broadband and dual-broadband by altering the water substrate thickness. These peculiar properties make the proposed meta-absorber more favorable for practical applications in modern stealth materials and optical windows.
引用
收藏
页数:9
相关论文
共 39 条
[1]   Water: Promising Opportunities For Tunable All-dielectric Electromagnetic Metamaterials [J].
Andryieuski, Andrei ;
Kuznetsova, Svetlana M. ;
Zhukovsky, Sergei V. ;
Kivshar, Yuri S. ;
Lavrinenko, Andrei V. .
SCIENTIFIC REPORTS, 2015, 5
[2]   Dynamically controlling terahertz wavefronts with cascaded metasurfaces [J].
Cai, Xiaodong ;
Tang, Rong ;
Zhou, Haoyang ;
Li, Qiushi ;
Ma, Shaojie ;
Wang, Dongyi ;
Liu, Tong ;
Ling, Xiaohui ;
Tan, Wei ;
He, Qiong ;
Xiao, Shiyi ;
Zhou, Lei .
ADVANCED PHOTONICS, 2021, 3 (03)
[3]   Interference theory of metamaterial perfect absorbers [J].
Chen, Hou-Tong .
OPTICS EXPRESS, 2012, 20 (07) :7165-7172
[4]   Ultrabroadband microwave absorber based on 3D water microchannels [J].
Chen, Yan ;
Chen, Kejian ;
Zhang, Dajun ;
Li, Shihao ;
Xu, Yeli ;
Wang, Xiong ;
Zhuang, Songlin .
PHOTONICS RESEARCH, 2021, 9 (07) :1391-1396
[5]   An ultra-broadband and optically transparent metamaterial absorber based on multilayer indium-tin-oxide structure [J].
Deng, Guangsheng ;
Lv, Kun ;
Sun, Hanxiao ;
Yang, Jun ;
Yin, Zhiping ;
Chi, Baihong ;
Li, Xiangxiang .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (16)
[6]   Targeted design, analysis and experimental characterization of flexible microwave absorber for window application [J].
Deng, Ruixiang ;
Zhang, Ke ;
Li, Meiling ;
Song, Lixin ;
Zhang, Tao .
MATERIALS & DESIGN, 2019, 162 :119-129
[7]   Rapid customized design of a conformal optical transparent metamaterial absorber based on the circuit analog optimization method [J].
Dong, Lin ;
Si, Liming ;
Xu, Haoyang ;
Shen, Qitao ;
Lv, Xin ;
Zhuang, Yaqiang ;
Zhang, Qingle .
OPTICS EXPRESS, 2022, 30 (05) :8303-8316
[8]   Tunable structured light with flat optics [J].
Dorrah, Ahmed H. ;
Capasso, Federico .
SCIENCE, 2022, 376 (6591) :367-+
[9]   An optically transparent broadband metamaterial absorber for radar-infrared bi-stealth [J].
Gao, Zhiqiang ;
Fan, Qi ;
Tian, Xiaoxia ;
Xu, Cuilian ;
Meng, Zhen ;
Huang, Sining ;
Xiao, Tong ;
Tian, Changhui .
OPTICAL MATERIALS, 2021, 112
[10]   Nanolayered VO2-Based Switchable Terahertz Metasurfaces as Near-Perfect Absorbers and Antireflection Coatings [J].
Ge, Jiahao ;
Zhang, Yaqiang ;
Dong, Hongxing ;
Zhang, Long .
ACS APPLIED NANO MATERIALS, 2022, 5 (04) :5569-5577