Computer-aided classification of indirect immunofluorescence patterns on esophagus and split skin for the detection of autoimmune dermatoses

被引:6
作者
Hocke, Jens [1 ]
Krauth, Jens [1 ]
Krause, Christopher [1 ]
Gerlach, Stefan [1 ]
Warnemuende, Nicole [1 ]
Affeldt, Kai [1 ]
van Beek, Nina [2 ]
Schmidt, Enno [2 ,3 ]
Voigt, Joern [1 ]
机构
[1] EUROIMMUN Med Labordiagnostika AG, Inst Expt Immunol, Lubeck, Germany
[2] Univ Lubeck, Univ Hosp Schleswig Holstein, Dept Dermatol Allergol & Venerol, Lubeck, Germany
[3] Univ Lubeck, Lubeck Inst Expt Dermatol LIED, Lubeck, Germany
关键词
autoimmune dermatoses; neural networks; immunofluorescence tests; tissue classification; deep learning; BULLOUS DISEASES; CLINICAL-FEATURES; BLISTER FLUID; ELEVATED LEVELS; DIAGNOSIS; MICROSCOPY;
D O I
10.3389/fimmu.2023.1111172
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Autoimmune bullous dermatoses (AIBD) are rare diseases that affect human skin and mucous membranes. Clinically, they are characterized by blister formation and/or erosions. Depending on the structures involved and the depth of blister formation, they are grouped into pemphigus diseases, pemphigoid diseases, and dermatitis herpetiformis. Classification of AIBD into their sub-entities is crucial to guide treatment decisions. One of the most sensitive screening methods for initial differentiation of AIBD is the indirect immunofluorescence (IIF) microscopy on tissue sections of monkey esophagus and primate salt-split skin, which are used to detect disease-specific autoantibodies. Interpretation of IIF patterns requires a detailed examination of the image by trained professionals automating this process is a challenging task with these highly complex tissue substrates, but offers the great advantage of an objective result. Here, we present computer-aided classification of esophagus and salt-split skin IIF images. We show how deep networks can be adapted to the specifics and challenges of IIF image analysis by incorporating segmentation of relevant regions into the prediction process, and demonstrate their high accuracy. Using this semi-automatic extension can reduce the workload of professionals when reading tissue sections in IIF testing. Furthermore, these results on highly complex tissue sections show that further integration of semi-automated workflows into the daily workflow of diagnostic laboratories is promising.
引用
收藏
页数:11
相关论文
共 56 条
[1]   The use of BIOCHIP mosaics in diagnostics of bullous pemphigoid: Evaluation and comparison to conventional multistep procedures [J].
Adaszewska, Alicja ;
Kalinska-Bienias, Agnieszka ;
Jagielski, Pawel ;
Wozniak, Katarzyna ;
Kowalewski, Cezary .
JOURNAL OF CUTANEOUS PATHOLOGY, 2020, 47 (02) :121-127
[2]   Autoimmune Subepidermal Bullous Diseases of the Skin and Mucosae: Clinical Features, Diagnosis, and Management [J].
Amber, Kyle T. ;
Murrell, Dedee F. ;
Schmidt, Enno ;
Joly, Pascal ;
Borradori, Luca .
CLINICAL REVIEWS IN ALLERGY & IMMUNOLOGY, 2018, 54 (01) :26-51
[3]   Comparative analysis of BIOCHIP mosaic-based indirect immunofluorescence with direct immunofluorescence in diagnosis of autoimmune bullous diseases: A cross-sectional study [J].
Arunprasath, P. ;
Rai, Reena ;
Venkataswamy, Chaitra .
INDIAN DERMATOLOGY ONLINE JOURNAL, 2020, 11 (06) :915-919
[4]   Milestones in Personalized Medicine in Pemphigus and Pemphigoid [J].
Bieber, Katja ;
Kridin, Khalaf ;
Emtenani, Shirin ;
Boch, Katharina ;
Schmidt, Enno ;
Ludwig, Ralf J. .
FRONTIERS IN IMMUNOLOGY, 2021, 11
[5]   Automated antinuclear immunofluorescence antibody screening: A comparative study of six computer-aided diagnostic systems [J].
Bizzaro, Nicola ;
Antico, Antonio ;
Platzgummer, Stefan ;
Tonutti, Elio ;
Bassetti, Danila ;
Pesente, Fiorenza ;
Tozzoli, Renato ;
Tampoia, Marilina ;
Villalta, Danilo .
AUTOIMMUNITY REVIEWS, 2014, 13 (03) :292-298
[6]   Updated S2 K guidelines for the management of bullous pemphigoid initiated by the European Academy of Dermatology and Venereology (EADV) [J].
Borradori, L. ;
Van Beek, N. ;
Feliciani, C. ;
Tedbirt, B. ;
Antiga, E. ;
Bergman, R. ;
Boeckle, B. C. ;
Caproni, M. ;
Caux, F. ;
Chandran, N. S. ;
Cianchini, G. ;
Daneshpazhooh, M. ;
De, D. ;
Didona, D. ;
Di Zenzo, G. M. ;
Dmochowski, M. ;
Drenovska, K. ;
Ehrchen, J. ;
Goebeler, M. ;
Groves, R. ;
Guenther, C. ;
Horvath, B. ;
Hertl, M. ;
Hofmann, S. ;
Ioannides, D. ;
Itzlinger-Monshi, B. ;
Jedlickova, J. ;
Kowalewski, C. ;
Kridin, K. ;
Lim, Y. L. ;
Marinovic, B. ;
Marzano, A. ;
Mascaro, J. -M. ;
Meijer, J. M. ;
Murrell, D. ;
Patsatsi, K. ;
Pincelli, C. ;
Prost, C. ;
Rappersberger, K. ;
Sardy, M. ;
Setterfield, J. ;
Shahid, M. ;
Sprecher, E. ;
Tasanen, K. ;
Uzun, S. ;
Vassileva, S. ;
Vestergaard, K. ;
Vorobyev, A. ;
Vujic, I. ;
Wang, G. .
JOURNAL OF THE EUROPEAN ACADEMY OF DERMATOLOGY AND VENEREOLOGY, 2022, 36 (10) :1689-1704
[7]   STOCHASTIC SAMPLING IN COMPUTER-GRAPHICS [J].
COOK, RL .
ACM TRANSACTIONS ON GRAPHICS, 1986, 5 (01) :51-72
[8]   Bullous pemphigoid: From the clinic to the bench [J].
Di Zenzo, Giovanni ;
della Torre, Rocco ;
Zambruno, Giovanna ;
Borradori, Luca .
CLINICS IN DERMATOLOGY, 2012, 30 (01) :3-16
[9]  
Diercks Gilles F, 2017, Surg Pathol Clin, V10, P505, DOI 10.1016/j.path.2017.01.011
[10]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+