Mussel-Inspired, Underwater Self-Healing Ionoelastomers Based on α-Lipoic Acid for Iontronics

被引:29
|
作者
Gao, Jiaxiang [1 ,2 ]
Zhang, Qing [1 ,2 ]
Wu, Bo [1 ,2 ]
Gao, Xiaodan [1 ,2 ]
Liu, Zhengyuan [1 ,2 ]
Yang, Haoyu [1 ,2 ]
Yuan, Jikang [3 ]
Huang, Jijun [1 ,2 ]
机构
[1] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Huzhou Coll, Sch Intelligent Mfg, Huzhou Key Lab Green Energy Mat & Battery Cascade, Huzhou 313000, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
adhesion; catechol; flame retardancy; ionic conductivity; ionoelastomers; underwater self-healing; alpha-lipoic acid; ADHESIVE; TRANSPARENT; ELASTOMER; CONDUCTOR; NETWORKS; POLYMERS; STRENGTH; SENSORS;
D O I
10.1002/smll.202207334
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Weak adhesion and lack of underwater self-healability hinder advancing soft iontronics particularly in wet environments like sweaty skin and biological fluids. Mussel-inspired, liquid-free ionoelastomers are reported based on seminal thermal ring-opening polymerization of a biomass molecule of alpha-lipoic acid (LA), followed by sequentially incorporating dopamine methacrylamide as a chain extender, N,N & PRIME;-bis(acryloyl) cystamine, and lithium bis(trifluoromethanesulphonyl) imide (LiTFSI). The ionoelastomers exhibit universal adhesion to 12 substrates in both dry and wet states, superfast self-healing underwater, sensing capability for monitoring human motion, and flame retardancy. The underwater self-repairabilitiy prolongs over three months without deterioration, and sustains even when mechanical properties greatly increase. The unprecedented underwater self-mendability benefits synergistically from the maximized availability of dynamic disulfide bonds and diverse reversible noncovalent interactions endowed by carboxylic groups, catechols, and LiTFSI, along with the prevented depolymerization by LiTFSI and tunability in mechanical strength. The ionic conductivity reaches 1.4 x 10(-6)-2.7 x 10(-5) S m(-1) because of partial dissociation of LiTFSI. The design rationale offers a new route for creating a wide range of LA- and sulfur-derived supramolecular (bio)polymers with superior adhesion, healability, and other functionalities, and thus has technological implications for coatings, adhesives, binders and sealants, biomedical engineering and drug delivery, wearable and flexible electronics, and human-machine interfaces.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Preparation of mussel-inspired injectable hydrogels based on dual-functionalized alginate with improved adhesive, self-healing, and mechanical properties
    Yan, Shifeng
    Wang, Weidong
    Li, Xing
    Ren, Jie
    Yun, Wentao
    Zhang, Kunxi
    Li, Guifei
    Yin, Jingbo
    JOURNAL OF MATERIALS CHEMISTRY B, 2018, 6 (40) : 6377 - 6390
  • [22] Mussel-inspired chitosan-based hydrogel sensor with pH-responsive and adjustable adhesion, toughness and self-healing capability
    Quan, Lin
    Tie, Jianfei
    Wang, Yamei
    Mao, Zhiping
    Zhang, Linping
    Zhong, Yi
    Sui, Xiaofeng
    Feng, Xueling
    Xu, Hong
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2022, 33 (06) : 1867 - 1880
  • [23] Metals & polymers in the mix: fine-tuning the mechanical properties & color of self-healing mussel-inspired hydrogels
    Krogsgaard, Marie
    Hansen, Michael Ryan
    Birkedal, Henrik
    JOURNAL OF MATERIALS CHEMISTRY B, 2014, 2 (47) : 8292 - 8297
  • [24] Mussel-inspired healing of a strong and stiff polymer
    Chen, Ning
    Qin, Liming
    Pan, Qinmin
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (15) : 6667 - 6674
  • [25] Mussel-inspired nanoparticle composite hydrogels for hemostasis and wound healing
    Cui, Guihua
    Guo, Xiaoyu
    Su, Ping
    Zhang, Tianshuo
    Guan, Jiao
    Wang, Chungang
    FRONTIERS IN CHEMISTRY, 2023, 11
  • [26] Development of Biocompatible Mussel-Inspired Cellulose-Based Underwater Adhesives
    Tang, Zuwu
    Lin, Xinxing
    Yu, Meiqiong
    Mondal, Ajoy Kanti
    Wu, Hui
    ACS OMEGA, 2024, 9 (03): : 3877 - 3884
  • [27] A mussel-inspired multifunctional hydrogel reinforced by bacterial cellulose for wound healing: sustained drug release, enhanced adhesion and self-healing property
    Xiaotong Yi
    Jinmei He
    Xinjing Wei
    Hongbin Li
    Xingyuan Liu
    Feng Cheng
    Cellulose, 2023, 30 : 6523 - 6538
  • [28] Mussel-inspired Self-assembly into Polymer Coatings of Different Molecular Weight Electrolytes for Enhanced Self-healing and Corrosion Properties
    Zhang, Meiling
    Yu, Xiaoming
    Sheng, Mengyi
    Chen, Hua
    CHEMISTRY-AN ASIAN JOURNAL, 2023, 18 (18)
  • [29] Highly Stretchable and Biocompatible Strain Sensors Based on Mussel-Inspired Super-Adhesive Self-Healing Hydrogels for Human Motion Monitoring
    Jing, Xin
    Mi, Hao-Yang
    Lin, Yu-Jyun
    Enriquez, Eduardo
    Peng, Xiang-Fang
    Turng, Lih-Sheng
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (24) : 20897 - 20909
  • [30] A mussel-inspired multifunctional hydrogel reinforced by bacterial cellulose for wound healing: sustained drug release, enhanced adhesion and self-healing property
    Yi, Xiaotong
    He, Jinmei
    Wei, Xinjing
    Li, Hongbin
    Liu, Xingyuan
    Cheng, Feng
    CELLULOSE, 2023, 30 (10) : 6523 - 6538