Radiomics and Artificial Intelligence Can Predict Malignancy of Solitary Pulmonary Nodules in the Elderly

被引:8
作者
Elia, Stefano [1 ,2 ]
Pompeo, Eugenio [1 ]
Santone, Antonella [2 ]
Rigoli, Rebecca [1 ]
Chiocchi, Marcello [3 ]
Patirelis, Alexandro [1 ]
Mercaldo, Francesco [2 ]
Mancuso, Leonardo [3 ]
Brunese, Luca [2 ]
机构
[1] Thorac Surg Unit, Policlin Tor Vergata, I-00133 Rome, Italy
[2] Univ Molise, Dept Med & Hlth Sci V Tiberio, I-86100 Campobasso, Italy
[3] Univ Tor Vergata, Dept Diagnost Imaging & Intervent Radiol, I-00133 Rome, Italy
关键词
solitary pulmonary nodule; radiomics; artificial intelligence analysis; machine learning; lung cancer; elderly; LUNG-CANCER; RECONSTRUCTION PARAMETERS; VOLUMETRIC MEASUREMENT; DIAGNOSIS; CT; OCTOGENARIANS; CONFIRMATION; GUIDELINES; MANAGEMENT; OUTCOMES;
D O I
10.3390/diagnostics13030384
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Solitary pulmonary nodules (SPNs) are a diagnostic and therapeutic challenge for thoracic surgeons. Although such lesions are usually benign, the risk of malignancy remains significant, particularly in elderly patients, who represent a large segment of the affected population. Surgical treatment in this subset, which usually presents several comorbidities, requires careful evaluation, especially when pre-operative biopsy is not feasible and comorbidities may jeopardize the outcome. Radiomics and artificial intelligence (AI) are progressively being applied in predicting malignancy in suspicious nodules and assisting the decision-making process. In this study, we analyzed features of the radiomic images of 71 patients with SPN aged more than 75 years (median 79, IQR 76-81) who had undergone upfront pulmonary resection based on CT and PET-CT findings. Three different machine learning algorithms were applied-functional tree, Rep Tree and J48. Histology was malignant in 64.8% of nodules and the best predictive value was achieved by the J48 model (AUC 0.9). The use of AI analysis of radiomic features may be applied to the decision-making process in elderly frail patients with suspicious SPNs to minimize the false positive rate and reduce the incidence of unnecessary surgery.
引用
收藏
页数:14
相关论文
共 50 条
[41]   Integrating Machine Learning in Clinical Practice for Characterizing the Malignancy of Solitary Pulmonary Nodules in PET/CT Screening [J].
Apostolopoulos, Ioannis D. ;
Papathanasiou, Nikolaos D. ;
Apostolopoulos, Dimitris J. ;
Papandrianos, Nikolaos ;
Papageorgiou, Elpiniki I. .
DISEASES, 2024, 12 (06)
[42]   Putting artificial intelligence (AI) on the spot: machine learning evaluation of pulmonary nodules [J].
Tandon, Yasmeen K. ;
Bartholmai, Brian J. ;
Koo, Chi Wan .
JOURNAL OF THORACIC DISEASE, 2020, 12 (11) :6954-6965
[43]   Risk assessment of malignancy in solitary pulmonary nodules in lung computed tomography: a multivariable predictive model study [J].
Liu, Hai-Yang ;
Zhao, Xing-Ru ;
Chi, Meng ;
Cheng, Xiang-Song ;
Wang, Zi-Qi ;
Xu, Zhi-Wei ;
Li, Yong-Li ;
Yang, Rui ;
Wu, Yong-Jun ;
Zhang, Xiao-Ju .
CHINESE MEDICAL JOURNAL, 2021, 134 (14) :1687-1694
[44]   An artificial intelligence-assisted diagnostic system for the prediction of benignity and malignancy of pulmonary nodules and its practical value for patients with different clinical characteristics [J].
Zhang, Lichuan ;
Shao, Yue ;
Chen, Guangmei ;
Tian, Simiao ;
Zhang, Qing ;
Wu, Jianlin ;
Bai, Chunxue ;
Yang, Dawei .
FRONTIERS IN MEDICINE, 2023, 10
[45]   A radiomics model for determining the invasiveness of solitary pulmonary nodules that manifest as part-solid nodules [J].
Weng, Q. ;
Zhou, L. ;
Wang, H. ;
Hui, J. ;
Chen, M. ;
Pang, P. ;
Zheng, L. ;
Xu, M. ;
Wang, Z. ;
Ji, J. .
CLINICAL RADIOLOGY, 2019, 74 (12) :933-943
[46]   Development and validation of CT radiomics diagnostic models: differentiating benign from malignant pulmonary nodules and evaluating malignancy degree [J].
Zhu, Jun ;
Tao, Jiayu ;
Zhu, Maoshan ;
Liu, Jiaqiang ;
Ma, Chonggang ;
Chen, Ke ;
Wang, Yuxuan ;
Lu, Xiaochen ;
Saito, Yuichi ;
Ni, Bin .
JOURNAL OF THORACIC DISEASE, 2025, 17 (03) :1645-1672
[47]   Radiomics can predict tumour response in patients treated with Nivolumab for a metastatic renal cell carcinoma: an artificial intelligence concept [J].
Zine‐Eddine Khene ;
Romain Mathieu ;
Benoit Peyronnet ;
Romain Kokorian ;
Anis Gasmi ;
Fares Khene ;
Nathalie Rioux-Leclercq ;
Solène-Florence Kammerer-Jacquet ;
Shahrokh Shariat ;
Brigitte Laguerre ;
Karim Bensalah .
World Journal of Urology, 2021, 39 :3707-3709
[48]   Principal Component Analysis Applied to Radiomics Data: Added Value for Separating Benign from Malignant Solitary Pulmonary Nodules [J].
Bomhals, Birte ;
Cossement, Lara ;
Maes, Alex ;
Sathekge, Mike ;
Mokoala, Kgomotso M. G. ;
Sathekge, Chabi ;
Ghysen, Katrien ;
van de Wiele, Christophe .
JOURNAL OF CLINICAL MEDICINE, 2023, 12 (24)
[49]   Radiomics can predict tumour response in patients treated with Nivolumab for a metastatic renal cell carcinoma: an artificial intelligence concept [J].
Khene, Zine-Eddine ;
Mathieu, Romain ;
Peyronnet, Benoit ;
Kokorian, Romain ;
Gasmi, Anis ;
Khene, Fares ;
Rioux-Leclercq, Nathalie ;
Kammerer-Jacquet, Solene-Florence ;
Shariat, Shahrokh ;
Laguerre, Brigitte ;
Bensalah, Karim .
WORLD JOURNAL OF UROLOGY, 2021, 39 (09) :3707-3709
[50]   Artificial intelligence, radiomics and pathomics to predict response and survival of patients treated with radiations [J].
Sun, R. ;
Lerousseau, M. ;
Henry, T. ;
Carre, A. ;
Leroy, A. ;
Estienne, T. ;
Niyoteka, S. ;
Bockel, S. ;
Rouyar, A. ;
Andres, E. Alvarez ;
Benzazon, N. ;
Battistella, E. ;
Classe, M. ;
Robert, C. ;
Scoazec, J. Y. ;
Deutsch, E. .
CANCER RADIOTHERAPIE, 2021, 25 (6-7) :630-637