Radiomics and Artificial Intelligence Can Predict Malignancy of Solitary Pulmonary Nodules in the Elderly

被引:8
作者
Elia, Stefano [1 ,2 ]
Pompeo, Eugenio [1 ]
Santone, Antonella [2 ]
Rigoli, Rebecca [1 ]
Chiocchi, Marcello [3 ]
Patirelis, Alexandro [1 ]
Mercaldo, Francesco [2 ]
Mancuso, Leonardo [3 ]
Brunese, Luca [2 ]
机构
[1] Thorac Surg Unit, Policlin Tor Vergata, I-00133 Rome, Italy
[2] Univ Molise, Dept Med & Hlth Sci V Tiberio, I-86100 Campobasso, Italy
[3] Univ Tor Vergata, Dept Diagnost Imaging & Intervent Radiol, I-00133 Rome, Italy
关键词
solitary pulmonary nodule; radiomics; artificial intelligence analysis; machine learning; lung cancer; elderly; LUNG-CANCER; RECONSTRUCTION PARAMETERS; VOLUMETRIC MEASUREMENT; DIAGNOSIS; CT; OCTOGENARIANS; CONFIRMATION; GUIDELINES; MANAGEMENT; OUTCOMES;
D O I
10.3390/diagnostics13030384
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Solitary pulmonary nodules (SPNs) are a diagnostic and therapeutic challenge for thoracic surgeons. Although such lesions are usually benign, the risk of malignancy remains significant, particularly in elderly patients, who represent a large segment of the affected population. Surgical treatment in this subset, which usually presents several comorbidities, requires careful evaluation, especially when pre-operative biopsy is not feasible and comorbidities may jeopardize the outcome. Radiomics and artificial intelligence (AI) are progressively being applied in predicting malignancy in suspicious nodules and assisting the decision-making process. In this study, we analyzed features of the radiomic images of 71 patients with SPN aged more than 75 years (median 79, IQR 76-81) who had undergone upfront pulmonary resection based on CT and PET-CT findings. Three different machine learning algorithms were applied-functional tree, Rep Tree and J48. Histology was malignant in 64.8% of nodules and the best predictive value was achieved by the J48 model (AUC 0.9). The use of AI analysis of radiomic features may be applied to the decision-making process in elderly frail patients with suspicious SPNs to minimize the false positive rate and reduce the incidence of unnecessary surgery.
引用
收藏
页数:14
相关论文
共 50 条
[21]   Artificial intelligence solution to classify pulmonary nodules on CT [J].
Blanc, D. ;
Racine, V. ;
Khalil, A. ;
Deloche, M. ;
Broyelle, J. -A. ;
Hammouamri, I. ;
Sinitambirivoutin, E. ;
Fiammante, M. ;
Verdier, E. ;
Besson, T. ;
Sadate, A. ;
Lederlin, M. ;
Laurent, F. ;
Chassagnon, G. ;
Ferretti, G. ;
Diascorn, Y. ;
Brillet, P. -Y. ;
Cassagnes, Lucie ;
Caramella, C. ;
Loubet, A. ;
Abassebay, N. ;
Cuingnet, P. ;
Ohana, M. ;
Behr, J. ;
Ginzac, A. ;
Veyssieres, H. ;
Durando, X. ;
Bousaid, I. ;
Lassaux, N. ;
Brehant, J. .
DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2020, 101 (12) :803-810
[22]   Artificial intelligence CT radiomics to predict early recurrence of intrahepatic cholangiocarcinoma: a multicenter study [J].
Song, Yangda ;
Zhou, Guangyao ;
Zhou, Yucheng ;
Xu, Yikai ;
Zhang, Jing ;
Zhang, Ketao ;
He, Pengyuan ;
Chen, Maowei ;
Liu, Yanping ;
Sun, Jiarun ;
Hu, Chengguang ;
Li, Meng ;
Liao, Minjun ;
Zhang, Yongyuan ;
Liao, Weijia ;
Zhou, Yuanping .
HEPATOLOGY INTERNATIONAL, 2023, 17 (04) :1016-1027
[23]   Radiomics nomogram for preoperative differentiation of pulmonary mucinous adenocarcinoma from tuberculoma in solitary pulmonary solid nodules [J].
Zhang, Junjie ;
Hao, Ligang ;
Qi, MingWei ;
Xu, Qian ;
Zhang, Ning ;
Feng, Hui ;
Shi, Gaofeng .
BMC CANCER, 2023, 23 (01)
[24]   Development and Validation of a Clinical Prediction Model to Estimate the Probability of Malignancy in Solitary Pulmonary Nodules in Chinese People [J].
Li, Yun ;
Chen, Ke-Zhong ;
Wang, Jun .
CLINICAL LUNG CANCER, 2011, 12 (05) :313-319
[25]   Development of a Radiomics Prediction Model for Histological Type Diagnosis in Solitary Pulmonary Nodules: The Combination of CT and FDG PET [J].
Yan, Mengmeng ;
Wang, Weidong .
FRONTIERS IN ONCOLOGY, 2020, 10
[26]   Computerized analysis of the likelihood of malignancy in solitary pulmonary nodules with use of artificial neural networks [J].
Nakamura, K ;
Yoshida, H ;
Engelmann, R ;
MacMahon, H ;
Katsuragawa, S ;
Ishida, T ;
Ashizawa, A ;
Doi, K .
RADIOLOGY, 2000, 214 (03) :823-830
[27]   Radiomics analysis to predict pulmonary nodule malignancy using machine learning approaches [J].
Warkentin, Matthew T. ;
Al-Sawaihey, Hamad ;
Lam, Stephen ;
Liu, Geoffrey ;
Diergaarde, Brenda ;
Yuan, Jian-Min ;
Wilson, David O. ;
Atkar-Khattra, Sukhinder ;
Grant, Benjamin ;
Brhane, Yonathan ;
Khodayari-Moez, Elham ;
Murison, Kiera R. ;
Tammemagi, Martin C. ;
Campbell, Kieran R. ;
Hung, Rayjean J. .
THORAX, 2024, 79 (04) :307-315
[28]   Use of artificial intelligence and machine learning for estimating malignancy risk of thyroid nodules [J].
Thomas, Johnson ;
Ledger, Gregory A. ;
Mamillapalli, Chaitanya K. .
CURRENT OPINION IN ENDOCRINOLOGY DIABETES AND OBESITY, 2020, 27 (05) :345-350
[29]   Usefulness of circumference difference for estimating the likelihood of malignancy in small solitary pulmonary nodules on CT [J].
Saito, Hajime ;
Minamiya, Yoshihiro ;
Kawai, Hideki ;
Nakagawa, Taku ;
Ito, Manabu ;
Hosono, Yukiko ;
Motoyama, Satoru ;
Hashimoto, Manabu ;
Ishiyama, Koichi ;
Ogawaa, Jun-ichi .
LUNG CANCER, 2007, 58 (03) :348-354
[30]   A Mathematical Model for Predicting Malignancy of Solitary Pulmonary Nodules [J].
Yun Li ;
Jun Wang .
World Journal of Surgery, 2012, 36 :830-835