Micromachining of predesigned perpendicular copper micropillar array by scanning electrochemical microscopy

被引:4
|
作者
Han, Lianhuan [1 ]
Ma, Zhen [2 ]
Wang, Chao [3 ]
Ye, Zuoyan [3 ]
Su, Jian-Jia [2 ]
Luo, ShiYi [2 ]
Wu, Yuan-Fei [2 ]
Zhan, Dongping [2 ]
机构
[1] Xiamen Univ, Sch Aerosp Engn, Dept Mech & Elect Engn, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Coll Chem & Chem Engn, Engn Res Ctr Electrochem Technol, Dept Chem,Minist Educ,Key Lab Phys Chem Solid Surf, Xiamen 361005, Peoples R China
[3] China Acad Engn Phys CAEP, Inst Machinery Mfg Technol, Mianyang 621900, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Scanning electrochemical microscopy; Electrochemical micromachining; Ultrashort voltage pulse; Perpendicular copper micropillar array; FEEDBACK MODE; FABRICATION; MICROFABRICATION; SEMICONDUCTORS; LITHOGRAPHY; PROBE;
D O I
10.1016/j.electacta.2023.141913
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Because the electrochemical reactions can occur gently at normal temperature and pressure, electrochemical micromachining (ECMM) is an important nontraditional precision machining technique free of tool wear, heating effect, residual stress, surface and subsurface damage, comparing with the ultra-precision milling, electrical discharging machining, laser beam machining, etc. Although scanning electrochemical microscopy (SECM) has been proven powerful in ECMM, it is difficult to fabricate the predesigned perpendicular microstructures because of the inhomogenous potential distribution, the complex electrode reaction kinetics and the interfacial mass transfer processes. Here we succeeded in fabricating the copper micropillar arrays by combining the SECM direct-writing mode and the ultrashort voltage pulse (USVP) modulations. The machining accuracy and efficiency are affected by multiple technical parameters, including the amplitude, the period and the duty cycle of the USVP modulations, the components and concentration of the electrolyte solution, the tip-substrate distance, the motion mode of the tool electrode, etc. By employing multiple parameters central composite experimental designs, we succeed in optimizing the technical parameters and avoiding the complexities of electrode processes. The results demonstrate the powerful capability of SECM in the controllable micromachining of the perpendicular metallic microstructures.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Scanning electrochemical microscopy with conducting polymer probes: Validation and applications
    Claudio-Cintron, Marie A.
    Rodriguez-Lopez, Joaquin
    ANALYTICA CHIMICA ACTA, 2019, 1069 : 36 - 46
  • [32] Quantitative characterization of shear force regulation for scanning electrochemical microscopy
    Tefashe, Ushula Mengesha
    Wittstock, Gunther
    COMPTES RENDUS CHIMIE, 2013, 16 (01) : 7 - 14
  • [33] An L-shaped nanoprobe for scanning electrochemical microscopy-atomic force microscopy
    Lee, Eunjoo
    Kim, Minseo
    Seong, Jungwoo
    Shin, Heungjoo
    Lim, Geunbae
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2013, 7 (06): : 406 - 409
  • [34] A study of localised galvanic replacement of copper and silver films with gold using scanning electrochemical microscopy
    O'Mullane, Anthony P.
    Ippolito, Samuel J.
    Bond, Alan M.
    Bhargava, Suresh K.
    ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (05) : 611 - 615
  • [35] Imaging of DNA microarray with scanning electrochemical microscopy
    Komatsu, M
    Yamashita, K
    Uchida, K
    Kondo, H
    Takenaka, S
    ELECTROCHIMICA ACTA, 2006, 51 (10) : 2023 - 2029
  • [36] Super-resolution Scanning Electrochemical Microscopy
    Stephens, Lisa, I
    Payne, Nicholas A.
    Mauzeroll, Janine
    ANALYTICAL CHEMISTRY, 2020, 92 (05) : 3958 - 3963
  • [37] Soft Stylus Probes for Scanning Electrochemical Microscopy
    Cortes-Salazar, Fernando
    Traeuble, Markus
    Li, Fei
    Busnel, Jean-Marc
    Gassner, Anne-Laure
    Hojeij, Mohamad
    Wittstock, Gunther
    Girault, Hubert H.
    ANALYTICAL CHEMISTRY, 2009, 81 (16) : 6889 - 6896
  • [38] Scanning Electrochemical Microscopy of Individual Catalytic Nanoparticles
    Sun, Tong
    Yu, Yun
    Zacher, Brian J.
    Mirkin, Michael V.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (51) : 14120 - 14123
  • [39] Scanning Electrochemical Microscopy for Photoelectrochemical Energy Research
    He Huichao
    Berglund, Sean P.
    Mullins, C. Buddie
    Zhou Yong
    Ke Gaili
    Dong Faqin
    PROGRESS IN CHEMISTRY, 2016, 28 (06) : 908 - 916
  • [40] Nanometer Scale Scanning Electrochemical Microscopy Instrumentation
    Kim, Jiyeon
    Renault, Christophe
    Nioradze, Nikoloz
    Arroyo-Curras, Netzahualcoyotl
    Leonard, Kevin C.
    Bard, Allen J.
    ANALYTICAL CHEMISTRY, 2016, 88 (20) : 10284 - 10289