On local regularity estimates for fractional powers of parabolic operators with time-dependent measurable coefficients

被引:7
作者
Litsgard, Malte [1 ]
Nystroem, Kaj [1 ]
机构
[1] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
关键词
Second-order parabolic equations; Parabolic Kato square root estimate; Fractional parabolic equation; Maximal accretive; Maximal dissipative; Strongly continuous semigroup; Extension problem; Dirichlet to Neumann map; Bounded and measurable coefficient; Half-order derivative; Local regularity; EXTENSION PROBLEM; INTEGRATED SEMIGROUPS; ELLIPTIC-OPERATORS; EQUATIONS;
D O I
10.1007/s00028-022-00844-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider fractional operators of the form H-s = (delta(t) - div(x) (A (x, t)del(x)))(s), (x, t) is an element of R-n x R, where s is an element of (0, 1) and A = A (x, t) = {A(i, j)(x, t)}(i,j=1)(n) is an accretive, bounded, complex, measurable, n x n-dimensional matrix valued function. We study the fractional operators H-s and their relation to the initial value problem (lambda(1-2s)u ')'(lambda) = lambda(1-2s)Hu(lambda), lambda is an element of (0, infinity), u(0) = u, in R+ x R-n x R. Exploring the relation, and making the additional assumption that A = A (x, t) = {A(i, j) (x, t)}(i, j=1)(n) is real, we derive some local properties of solutions to the non-local Dirichlet problem H-s u = (delta(t) - div(x) (A(x, t)del(x)))(s) u = 0 for (x, t) is an element of Omega x J, u = f for (x, t) is an element of Rn+1 \ (Omega x J). Our contribution is that we allow for non-symmetric and time-dependent coefficients.
引用
收藏
页数:33
相关论文
共 43 条
[1]  
[Anonymous], 1960, Pacific J. Math.
[2]  
[Anonymous], 1985, Rend. Sem. Mat. Univ.Padova
[3]  
[Anonymous], 2006, Oper. Theory Adv. Appl.
[4]   Fractional powers of sectorial operators via the Dirichlet-to-Neumann operator [J].
Arendt, W. ;
ter Elst, A. F. M. ;
Warma, M. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2018, 43 (01) :1-24
[5]  
Arendt W, 2012, J OPERAT THEOR, V67, P33
[6]  
Aronson D. G., 1968, Ann. Scuola Norm. Sup. Pisa Cl. Sci., V22, P607
[7]   The solution of the Kato square root problem for second order elliptic operators on Rn [J].
Auscher, P ;
Hofmann, S ;
Lacey, M ;
McIntosh, A ;
Tchamitchian, P .
ANNALS OF MATHEMATICS, 2002, 156 (02) :633-654
[8]   Extrapolation of Carleson measures and the analyticity of Kato's square-root operators [J].
Auscher, P ;
Hofmann, S ;
Lewis, JL ;
Tchamitchian, P .
ACTA MATHEMATICA, 2001, 187 (02) :161-190
[9]  
Auscher P, 1997, INDIANA U MATH J, V46, P375
[10]   THE DIRICHLET PROBLEM FOR SECOND ORDER PARABOLIC OPERATORS IN DIVERGENCE FORM [J].
Auscher, Pascal ;
Egert, Moritz ;
Nystrom, Kaj .
JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2018, 5 :407-441