The maximum size of a nonhamiltonian graph with given order and connectivity

被引:0
作者
Zhan, Xingzhi [1 ]
Zhang, Leilei [1 ]
机构
[1] East China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
关键词
Connectivity; Hamiltonian graph; Traceable graph; Size; Extremal graph;
D O I
10.1016/j.disc.2022.113208
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by work of Erdos, Ota determined the maximum size g(n, k) of a k-connected nonhamiltonian graph of order n in 1995. But for some pairs n, k, the maximum size is not attained by a graph of connectivity k. For example, g(15, 3) = 77 is attained by a unique graph of connectivity 7, not 3. In this paper we obtain more precise information by determining the maximum size of a nonhamiltonian graph of order n and connectivity k, and determining the extremal graphs. Consequently we solve the corresponding problem for nontraceable graphs.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 10 条
  • [1] [Anonymous], 1972, J. Combin. Theory, DOI DOI 10.1016/0095-8956(72)90020-2
  • [2] Bondy J.A., 1969, STUDIA SCI MATH HUNG, P473
  • [3] Bondy J.A., 2008, GRADUATE TEXTS MATH, V244, DOI DOI 10.1007/978-1-84628-970-5
  • [4] VARIATIONS ON HAMILTONIAN THEME
    BONDY, JA
    [J]. CANADIAN MATHEMATICAL BULLETIN, 1972, 15 (01): : 57 - &
  • [5] Chvatal V., 1972, DISCRETE MATH, V2, P111, DOI DOI 10.1016/0012-365X(72)90079-9
  • [6] Erdos P., 1962, PUBL MATH I HUNGER A, V7, P227
  • [7] Sufficient spectral conditions on Hamiltonian and traceable graphs
    Liu, Ruifang
    Shiu, Wai Chee
    Xue, Jie
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 467 : 254 - 266
  • [8] Ore O., 1961, Ann. Mat. Pura Appl., V55, P315
  • [9] CYCLES THROUGH PRESCRIBED VERTICES WITH LARGE DEGREE SUM
    OTA, K
    [J]. DISCRETE MATHEMATICS, 1995, 145 (1-3) : 201 - 210
  • [10] West D. B., 2001, INTRO GRAPH THEORY