User-centered visual explorer of in-process comparison in spatiotemporal space

被引:8
作者
Dong Yu [1 ]
Ian, Oppermann [1 ]
Liang Jie [1 ]
Yuan Xiaoru [2 ,3 ,4 ]
Nguyen Quang Vinh [5 ]
机构
[1] Univ Technol Sydney, Sch Comp Sci, Ultimo, Australia
[2] Peking Univ, Minist Educ, Key Lab Machine Percept, Beijing, Peoples R China
[3] Peking Univ, Sch AI, Beijing, Peoples R China
[4] Peking Univ, Natl Engn Lab Big Data Anal & Applicat, Beijing, Peoples R China
[5] Western Sydney Univ, Sch Comp Engn & Math, Sydney, NSW, Australia
关键词
Comparative visualization; User-centered; Progressive exploration; Spatiotemporal features; COVID-19; TIME; COVID-19; PATTERNS; DIAGNOSIS; SYSTEM; MAPS;
D O I
10.1007/s12650-022-00882-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a user-centered visual explorer (UcVE) for progressive comparing multiple visualization units in spatiotemporal space. We create unique unit visualization with the customizable aggregated view based on the visual metaphor of flower bursts. Each visualization unit is encoded with the abstraction of spatiotemporal properties. To reduce user cognition load, UcVE allows users to visualize, save, and track in-the-process exploration results. In coordination of storage sequence and block tracking views, UcVE can facilitate comparison with multiple visualization units concurrently, selected from historical and current exploration results. UcVE offers a flexible geo-based layout, with aggregation functions and temporal views of the timeline with categorized events, to maximize the user's exploration capabilities. Finally, we demonstrate the usefulness by using COVID-19 datasets, case studies with different user scenarios, and expert feedback.
引用
收藏
页码:403 / 421
页数:19
相关论文
共 62 条
[31]   A Visual Analytics System for Exploring, Monitoring, and Forecasting Road Traffic Congestion [J].
Lee, Chunggi ;
Kim, Yeonjun ;
Jin, Seungmin ;
Kim, Dongmin ;
Maciejewski, Ross ;
Ebert, David ;
Ko, Sungahn .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (11) :3133-3146
[32]  
Lee K, 2009, GLOB INST, P1
[33]   COVIs: Supporting Temporal Visual Analysis of Covid-19 Events Usable in Data-Driven Journalism [J].
Leite, Roger A. ;
Schetinger, Victor ;
Ceneda, Davide ;
Henz, Bernardo ;
Miksch, Silvia .
2020 IEEE VISUALIZATION CONFERENCE - SHORT PAPERS (VIS 2020), 2020, :56-60
[34]  
Levine N., 2013, CrimeStat: A spatial statistics program for the analysis of crime incident locations (version 4.02)
[35]   DDLVis: Real-time Visual Query of Spatiotemporal Data Distribution via Density Dictionary Learning [J].
Li, Chenhui ;
Baciu, George ;
Wang, Yunzhe ;
Chen, Junjie ;
Wang, Changbo .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (01) :1062-1072
[36]  
Li DC, 2017, INT GEOSCI REMOTE SE, P5563, DOI 10.1109/IGARSS.2017.8128264
[37]   CT image visual quantitative evaluation and clinical classification of coronavirus disease (COVID-19) [J].
Li, Kunwei ;
Fang, Yijie ;
Li, Wenjuan ;
Pan, Cunxue ;
Qin, Peixin ;
Zhong, Yinghua ;
Liu, Xueguo ;
Huang, Mingqian ;
Liao, Yuting ;
Li, Shaolin .
EUROPEAN RADIOLOGY, 2020, 30 (08) :4407-4416
[38]   Medical-VLBERT: Medical Visual Language BERT for COVID-19 CT Report Generation With Alternate Learning [J].
Liu, Guangyi ;
Liao, Yinghong ;
Wang, Fuyu ;
Zhang, Bin ;
Zhang, Lu ;
Liang, Xiaodan ;
Wan, Xiang ;
Li, Shaolin ;
Li, Zhen ;
Zhang, Shuixing ;
Cui, Shuguang .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (09) :3786-3797
[39]   Supporting the Problem-Solving Loop: Designing Highly Interactive Optimisation Systems [J].
Liu, Jie ;
Dwyer, Tim ;
Tack, Guido ;
Gratzl, Samuel ;
Marriott, Kim .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2021, 27 (02) :1764-1774
[40]   A Visual Analytics Approach to Scheduling Customized Shuttle Buses via Perceiving Passengers' Travel Demands [J].
Liu, Qiangqiang ;
Li, Quan ;
Tang, Chunfeng ;
Lin, Huanbin ;
Ma, Xiaojuan ;
Chen, Tianjian .
2020 IEEE VISUALIZATION CONFERENCE - SHORT PAPERS (VIS 2020), 2020, :76-80