User-centered visual explorer of in-process comparison in spatiotemporal space

被引:8
作者
Dong Yu [1 ]
Ian, Oppermann [1 ]
Liang Jie [1 ]
Yuan Xiaoru [2 ,3 ,4 ]
Nguyen Quang Vinh [5 ]
机构
[1] Univ Technol Sydney, Sch Comp Sci, Ultimo, Australia
[2] Peking Univ, Minist Educ, Key Lab Machine Percept, Beijing, Peoples R China
[3] Peking Univ, Sch AI, Beijing, Peoples R China
[4] Peking Univ, Natl Engn Lab Big Data Anal & Applicat, Beijing, Peoples R China
[5] Western Sydney Univ, Sch Comp Engn & Math, Sydney, NSW, Australia
关键词
Comparative visualization; User-centered; Progressive exploration; Spatiotemporal features; COVID-19; TIME; COVID-19; PATTERNS; DIAGNOSIS; SYSTEM; MAPS;
D O I
10.1007/s12650-022-00882-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a user-centered visual explorer (UcVE) for progressive comparing multiple visualization units in spatiotemporal space. We create unique unit visualization with the customizable aggregated view based on the visual metaphor of flower bursts. Each visualization unit is encoded with the abstraction of spatiotemporal properties. To reduce user cognition load, UcVE allows users to visualize, save, and track in-the-process exploration results. In coordination of storage sequence and block tracking views, UcVE can facilitate comparison with multiple visualization units concurrently, selected from historical and current exploration results. UcVE offers a flexible geo-based layout, with aggregation functions and temporal views of the timeline with categorized events, to maximize the user's exploration capabilities. Finally, we demonstrate the usefulness by using COVID-19 datasets, case studies with different user scenarios, and expert feedback.
引用
收藏
页码:403 / 421
页数:19
相关论文
共 62 条
[1]   A Visual Analytics Based Decision Making Environment for COVID-19 Modeling and Visualization [J].
Afzal, Shehzad ;
Ghani, Sohaib ;
Jenkins-Smith, Hank C. ;
Ebert, David S. ;
Hadwiger, Markus ;
Hoteit, Ibrahim .
2020 IEEE VISUALIZATION CONFERENCE - SHORT PAPERS (VIS 2020), 2020, :86-90
[2]   SemanticTraj: A New Approach to Interacting with Massive Taxi Trajectories [J].
Al-Dohuki, Shamal ;
Kamw, Farah ;
Zhao, Ye ;
Ma, Chao ;
Wu, Yingyu ;
Yang, Jing ;
Ye, Xinyue ;
Wang, Fei ;
Li, Xin ;
Chen, Wei .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017, 23 (01) :11-20
[3]   Off the Radar: Comparative Evaluation of Radial Visualization Solutions for Composite Indicators [J].
Albo, Yael ;
Lanir, Joel ;
Bak, Peter ;
Rafaeli, Sheizaf .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2016, 22 (01) :569-578
[4]  
Aljrees Turki, 2016, 2016 International Conference on Machine Learning and Cybernetics (ICMLC). Proceedings, P799, DOI 10.1109/ICMLC.2016.7872990
[5]   Space-in-Time and Time-in-Space Self-Organizing Maps for Exploring Spatiotemporal Patterns [J].
Andrienko, G. ;
Andrienko, N. ;
Bremm, S. ;
Schreck, T. ;
von Landesberger, T. ;
Bak, P. ;
Keim, D. .
COMPUTER GRAPHICS FORUM, 2010, 29 (03) :913-922
[6]   Revealing Patterns and Trends of Mass Mobility Through Spatial and Temporal Abstraction of Origin-Destination Movement Data [J].
Andrienko, Gennady ;
Andrienko, Natalia ;
Fuchs, Georg ;
Wood, Jo .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017, 23 (09) :2120-2136
[7]  
[Anonymous], 2011, P 25 C INT CART ASS
[8]  
Antweiler D, 2021, EUROVIS WORKSH VIS A
[9]   Time Curves: Folding Time to Visualize Patterns of Temporal Evolution in Data [J].
Bach, Benjamin ;
Shi, Conglei ;
Heulot, Nicolas ;
Madhyastha, Tara ;
Grabowski, Tom ;
Dragicevic, Pierre .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2016, 22 (01) :559-568
[10]   D3: Data-Driven Documents [J].
Bostock, Michael ;
Ogievetsky, Vadim ;
Heer, Jeffrey .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2011, 17 (12) :2301-2309