DeepConsensus improves the accuracy of sequences with a gap-aware sequence transformer

被引:86
作者
Baid, Gunjan [1 ]
Cook, Daniel E. [1 ]
Shafin, Kishwar [1 ]
Yun, Taedong [1 ]
Llinares-Lopez, Felipe [1 ]
Berthet, Quentin [1 ]
Belyaeva, Anastasiya [1 ]
Topfer, Armin [2 ]
Wenger, Aaron M. [2 ]
Rowell, William J. [2 ]
Yang, Howard [1 ]
Kolesnikov, Alexey [1 ]
Ammar, Waleed [1 ]
Vert, Jean-Philippe [1 ]
Vaswani, Ashish [1 ]
McLean, Cory Y. [1 ]
Nattestad, Maria [1 ]
Chang, Pi-Chuan [1 ]
Carroll, Andrew [1 ]
机构
[1] Google LLC, Mountain View, CA 94043 USA
[2] Pacific Biosci, Menlo Pk, CA USA
关键词
GENOME; TOOL;
D O I
10.1038/s41587-022-01435-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Circular consensus sequencing with Pacific Biosciences (PacBio) technology generates long (10-25 kilobases), accurate 'HiFi' reads by combining serial observations of a DNA molecule into a consensus sequence. The standard approach to consensus generation, pbccs, uses a hidden Markov model. We introduce DeepConsensus, which uses an alignment-based loss to train a gap-aware transformer-encoder for sequence correction. Compared to pbccs, DeepConsensus reduces read errors by 42%. This increases the yield of PacBio HiFi reads at Q20 by 9%, at Q30 by 27% and at Q40 by 90%. With two SMRT Cells of HG003, reads from DeepConsensus improve hifiasm assembly contiguity (NG50 4.9 megabases (Mb) to 17.2 Mb), increase gene completeness (94% to 97%), reduce the false gene duplication rate (1.1% to 0.5%), improve assembly base accuracy (Q43 to Q45) and reduce variant-calling errors by 24%. DeepConsensus models could be trained to the general problem of analyzing the alignment of other types of sequences, such as unique molecular identifiers or genome assemblies. Deep learning reduces errors in sequences from PacBio HiFi reads.
引用
收藏
页码:232 / +
页数:13
相关论文
共 42 条
[11]  
Dosovitskiy A., 2020, ICLR 2021
[12]   QUAST: quality assessment tool for genome assemblies [J].
Gurevich, Alexey ;
Saveliev, Vladislav ;
Vyahhi, Nikolay ;
Tesler, Glenn .
BIOINFORMATICS, 2013, 29 (08) :1072-1075
[13]   NextPolish: a fast and efficient genome polishing tool for long-read assembly [J].
Hu, Jiang ;
Fan, Junpeng ;
Sun, Zongyi ;
Liu, Shanlin .
BIOINFORMATICS, 2020, 36 (07) :2253-2255
[14]   CCNet: Criss-Cross Attention for Semantic Segmentation [J].
Huang, Zilong ;
Wang, Xinggang ;
Huang, Lichao ;
Huang, Chang ;
Wei, Yunchao ;
Liu, Wenyu .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :603-612
[15]  
Islam S, 2014, NAT METHODS, V11, P163, DOI [10.1038/NMETH.2772, 10.1038/nmeth.2772]
[16]  
Katharopoulos A., 2020, PREPRINT
[17]  
Kingma DP, 2014, ADV NEUR IN, V27
[18]   Best practices for benchmarking germline small-variant calls in human genomes [J].
Krusche, Peter ;
Trigg, Len ;
Boutros, Paul C. ;
Mason, Christopher E. ;
De La Vega, Francisco M. ;
Moore, Benjamin L. ;
Gonzalez-Porta, Mar ;
Eberle, Michael A. ;
Tezak, Zivana ;
Lababidi, Samir ;
Truty, Rebecca ;
Asimenos, George ;
Funke, Birgit ;
Fleharty, Mark ;
Chapman, Brad A. ;
Salit, Marc ;
Zook, Justin M. .
NATURE BIOTECHNOLOGY, 2019, 37 (05) :555-+
[19]  
Lal A., IMPROVING LONG READ, DOI [10.1101/2021.06.28.450238(2021, DOI 10.1101/2021.06.28.450238(2021]
[20]   A synthetic-diploid benchmark for accurate variant-calling evaluation [J].
Li, Heng ;
Bloom, Jonathan M. ;
Farjoun, Yossi ;
Fleharty, Mark ;
Gauthier, Laura ;
Neale, Benjamin ;
MacArthur, Daniel .
NATURE METHODS, 2018, 15 (08) :595-+