Nonlocal diffusion equations in Carnot groups

被引:0
作者
Cardoso, Isolda E. [1 ]
Vidal, Raul E. [2 ]
机构
[1] Fac Ciencias Exactas Ingn & Agrimensura, Pellegrini 250, Rosario, Santa Fe, Argentina
[2] Fac Matemat Astron & Fis, Medina Allende S-N, Cordoba, Argentina
关键词
Nonlocal diffusion equations; Carnot groups; Taylor expansion; Dirichlet problem; BOUNDARY; APPROXIMATE;
D O I
10.1007/s12215-022-00780-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a Carnot group. We study nonlocal diffusion equations in a domain Omega of G of the form u(t)(epsilon)(x, t) = integral(G)1/epsilon(2) K-epsilon(x,y)(u(epsilon)(y,t) - u(epsilon)(x,t)) dy, x is an element of Omega with u(epsilon) = g(x, t) for x is not an element of Omega. For an appropriated resealed kernel K-epsilon, we apply the Taylor series development in Carnot groups in order to prove that the solutions u(epsilon) uniformly approximate the solution of a certain local Dirichlet problem in Omega, when epsilon -> 0.
引用
收藏
页码:2159 / 2180
页数:22
相关论文
共 17 条
[1]   Schauder estimates at the boundary for sub-laplacians in Carnot groups [J].
Baldi, Annalisa ;
Citti, Giovanna ;
Cupini, Giovanni .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (06)
[2]  
Banerjee A, 2019, CALC VAR PARTIAL DIF, V58, DOI 10.1007/s00526-019-1531-2
[3]   An integro-differential equation arising as a limit of individual cell-based models [J].
Bodnar, M ;
Velazquez, JJL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 222 (02) :341-380
[4]   Spatial effects in discrete generation population models [J].
Carrillo, C ;
Fife, P .
JOURNAL OF MATHEMATICAL BIOLOGY, 2005, 50 (02) :161-188
[5]   Asymptotic behavior for nonlocal diffusion equations [J].
Chasseigne, Emmanuel ;
Chaves, Manuela ;
Rossi, Julio D. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 86 (03) :271-291
[6]   Nonlocal diffusion problems that approximate the heat equation with Dirichlet boundary conditions [J].
Cortazar, Carmen ;
Elgueta, Manuel ;
Rossi, Julio D. .
ISRAEL JOURNAL OF MATHEMATICS, 2009, 170 (01) :53-60
[8]  
Fife P, 2003, TRENDS IN NONLINEAR ANALYSIS, P153
[9]  
Folland G. B., 1982, MATH NOTES, V28
[10]   Well-posedness of Smoluchowski's coagulation equation for a class of homogeneous kernels [J].
Fournier, N ;
Laurençot, P .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 233 (02) :351-379