Influence of Calcination Temperature over Vanadium-Molybdenum Catalysts for the Selective Catalytic Reduction of NOx with NH3

被引:0
|
作者
Wang, Kaiqi [1 ]
Lin, Bo [2 ]
Xiao, Wende [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[2] Wison Engn China Co Ltd, Shanghai 201210, Peoples R China
关键词
V2O5-MOO3/TIO2; CATALYST; REACTION-MECHANISM; SCR; V2O5-WO3/TIO2; NH3-SCR; OXIDES; CERIA; ENHANCEMENT; PERFORMANCE; RESISTANCE;
D O I
10.1021/acs.iecr.3c04666
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A coprecipitation approach was used to prepare vanadium-molybdenum composite oxide catalysts, which were then calcined at 300, 400, 500, 600, and 700 degrees C. The vanadium-molybdenum catalyst, under calcination at 500 degrees C, possesses abundant surface defects and acid species. As a result, it showed an outstanding active window, achieving over 90% NOx conversion efficiency within the temperature range of 220-340 degrees C. Compared with other catalysts, the vanadium-molybdenum catalyst with the calcination at 500 degrees C resulted in the formation of polymeric vanadate with the most active oxygen, which was conducive to the high catalytic efficiency for the NH3-SCR reaction. Based on our in-depth understanding gained from in situ DRIFTS experiments, we proposed that the NH3-SCR reaction occurred on the vanadium-molybdenum catalyst via an Eley-Rideal pathway. This mechanism involves the initial adsorption of ammonia on the catalytic surface, followed by its interaction with weakly adsorbed or gaseous NO to form an activated complex. Furthermore, the presence of molecular oxygen (O-2) serves to augment the adsorption and activation of nitric oxide over the catalytic surface. The augmentation arises from the generation of adsorbed NO2 species or nitrates, which possess pronounced oxidizing capabilities. Notably, the significant impact of NH3 and NO in the denitration reaction was elucidated, providing valuable insights that can guide the adjustment and optimization of practical operational conditions. This understanding is crucial for enhancing the efficiency and effectiveness of the denitration process, thereby contributing to improved environmental qualities.
引用
收藏
页码:5666 / 5677
页数:12
相关论文
共 50 条
  • [21] Low temperature selective catalytic reduction of NOx with NH3 over amorphous MnOx catalysts prepared by three methods
    Tang, Xiaolong
    Hao, Jiming
    Xu, Wenguo
    Li, Junhua
    CATALYSIS COMMUNICATIONS, 2007, 8 (03) : 329 - 334
  • [22] Ordered Mesoporous MnAlOx Oxides Dominated by Calcination Temperature for the Selective Catalytic Reduction of NOx with NH3 at Low Temperature
    Hou, Qixiong
    Liu, Yongjin
    Hou, Yaqin
    Han, Xiaojin
    Huang, Zhanggen
    CATALYSTS, 2022, 12 (06)
  • [23] Low-temperature selective catalytic reduction of NOx with NH3 over MnFeOx nanorods
    Li, Yi
    Li, Yanping
    Wang, Pengfei
    Hu, Wenping
    Zhang, Suge
    Shi, Qiang
    Zhan, Sihui
    CHEMICAL ENGINEERING JOURNAL, 2017, 330 : 213 - 222
  • [24] Low-temperature selective catalytic reduction of NOx with NH3 over MnFeOx nanorods
    Li, Yi
    Li, Yanping
    Wang, Pengfei
    Hu, Wenping
    Zhang, Suge
    Shi, Qiang
    Zhan, Sihui
    Chemical Engineering Journal, 2017, 330 : 213 - 222
  • [25] Composite catalysts for selective catalytic reduction of NOx and oxidation of residual NH3
    A. I. Mytareva
    D. A. Bokarev
    G. N. Baeva
    D. S. Krivoruchenko
    A. Yu. Belyankin
    A. Yu. Stakheev
    Petroleum Chemistry, 2016, 56 : 211 - 216
  • [26] Selective catalytic reduction of NOx with NH3 over Mn–Zr–Ti mixed oxide catalysts
    Bolin Zhang
    Michael Liebau
    Bo Liu
    Lin Li
    Shengen Zhang
    Roger Gläser
    Journal of Materials Science, 2019, 54 : 6943 - 6960
  • [27] Selective Catalytic Reduction of NOx from Diesel Engine with NH3 over Zeolites Catalysts with Chabazite
    Xie Lijuan
    Shi Xiaoyan
    Liu Fudong
    Ruan Wenquan
    PROGRESS IN CHEMISTRY, 2016, 28 (12) : 1860 - 1869
  • [28] Selective catalytic reduction of NOx with NH3 over titanium modified FexMgyOz catalysts: Performance and characterization
    Xu, Liting
    Niu, Shengli
    Wang, Dong
    Lu, Chunmei
    Zhang, Qi
    Zhang, Kang
    Li, Jing
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2018, 63 : 391 - 404
  • [29] NH3 and urea in the selective catalytic reduction of NOx over oxide-supported copper catalysts
    Sullivan, JA
    Doherty, JA
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2005, 55 (03) : 185 - 194
  • [30] Mechanism of the selective catalytic reduction of NOx with NH3 over Cu-CHA-based catalysts
    Gao, Feng
    Wang, Yilin
    Kollar, Marton
    Walter, Eric
    Szanyi, Janos
    Peden, Charles
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247