Influence of ionizable lipid tail length on lipid nanoparticle delivery of mRNA of varying length

被引:21
作者
Mrksich, Kaitlin [1 ]
Padilla, Marshall S. [1 ]
Joseph, Ryann A. [1 ]
Han, Emily L. [1 ]
Kim, Dongyoon [1 ]
Palanki, Rohan [1 ,2 ]
Xu, Junchao [1 ]
Mitchell, Michael J. [1 ,3 ,4 ,5 ,6 ,7 ,8 ]
机构
[1] Univ Penn, Sch Engn & Appl Sci, Dept Bioengn, Philadelphia, PA 19104 USA
[2] Childrens Hosp Philadelphia, Ctr Fetal Res, Philadelphia, PA USA
[3] Univ Penn, Abramson Canc Ctr, Perelman Sch Med, Philadelphia, PA 19104 USA
[4] Univ Penn, Ctr Cellular Immunotherapies, Perelman Sch Med, Philadelphia, PA 19104 USA
[5] Univ Penn, Penn Inst RNA Innovat, Perelman Sch Med, Philadelphia, PA 19104 USA
[6] Univ Penn, Inst Immunol, Perelman Sch Med, Philadelphia, PA 19104 USA
[7] Univ Penn, Cardiovasc Inst, Perelman Sch Med, Philadelphia, PA 19104 USA
[8] Univ Penn, Inst Regenerat Med, Perelman Sch Med, Philadelphia, PA 19104 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Ionizable lipid; lipid nanoparticle; mRNA; IN-VIVO; PROTEIN EXPRESSION; ANTITUMOR IMMUNITY; VACCINES; POTENT; VITRO; TRAFFICKING; INDUCTION;
D O I
10.1002/jbm.a.37705
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
RNA-based therapeutics have gained traction for the prevention and treatment of a variety of diseases. However, their fragility and immunogenicity necessitate a drug carrier. Lipid nanoparticles (LNPs) have emerged as the predominant delivery vehicle for RNA therapeutics. An important component of LNPs is the ionizable lipid (IL), which is protonated in the acidic environment of the endosome, prompting cargo release into the cytosol. Currently, there is growing evidence that the structure of IL lipid tails significantly impacts the efficacy of LNP-mediated mRNA translation. Here, we optimized IL tail length for LNP-mediated delivery of three different mRNA cargos. Using C12-200, a gold standard IL, as a model, we designed a library of ILs with varying tail lengths and evaluated their potency in vivo. We demonstrated that small changes in lipophilicity can drastically increase or decrease mRNA translation. We identified that LNPs formulated with firefly luciferase mRNA (1929 base pairs) and C10-200, an IL with shorter tail lengths than C12-200, enhance liver transfection by over 10-fold. Furthermore, different IL tail lengths were found to be ideal for transfection of LNPs encapsulating mRNA cargos of varying sizes. LNPs formulated with erythropoietin (EPO), responsible for stimulating red blood cell production, mRNA (858 base pairs), and the C13-200 IL led to EPO translation at levels similar to the C12-200 LNP. The LNPs formulated with Cas9 mRNA (4521 base pairs) and the C9-200 IL induced over three times the quantity of indels compared with the C12-200 LNP. Our findings suggest that shorter IL tails may lead to higher transfection of LNPs encapsulating larger mRNAs, and that longer IL tails may be more efficacious for delivering smaller mRNA cargos. We envision that the results of this project can be utilized as future design criteria for the next generation of LNP delivery systems for RNA therapeutics.
引用
收藏
页码:1494 / 1505
页数:12
相关论文
共 74 条
[1]   The role of lipid components in lipid nanoparticles for vaccines and gene therapy [J].
Albertsen, Camilla Hald ;
Kulkarni, Jayesh A. ;
Witzigmann, Dominik ;
Lind, Marianne ;
Petersson, Karsten ;
Simonsen, Jens B. .
ADVANCED DRUG DELIVERY REVIEWS, 2022, 188
[2]   Interaction Kinetics of Individual mRNA-Containing Lipid Nanoparticles with an Endosomal Membrane Mimic: Dependence on pH, Protein Corona Formation, and Lipoprotein Depletion [J].
Aliakbarinodehi, Nima ;
Gallud, Audrey ;
Mapar, Mokhtar ;
Wesen, Emelie ;
Heydari, Sahar ;
Jing, Yujia ;
Emilsson, Gustav ;
Liu, Kai ;
Sabirsh, Alan ;
Zhdanov, Vladimir P. ;
Lindfors, Lennart ;
Esbjorner, Elin K. ;
Hook, Fredrik .
ACS NANO, 2022, 16 (12) :20163-20173
[3]   In vivo protein corona patterns of lipid nanoparticles [J].
Amici, A. ;
Caracciolo, G. ;
Digiacomo, L. ;
Gambini, V. ;
Marchini, C. ;
Tilio, M. ;
Capriotti, A. L. ;
Colapicchioni, V. ;
Matassa, R. ;
Familiari, G. ;
Palchetti, S. ;
Pozzi, D. ;
Mahmoudi, M. ;
Lagana, A. .
RSC ADVANCES, 2017, 7 (02) :1137-1145
[4]   Nanoparticle protein corona: from structure and function to therapeutic targeting [J].
Bashiri, Ghazal ;
Padilla, Marshall S. ;
Swingle, Kelsey L. ;
Shepherd, Sarah J. ;
Mitchell, Michael J. ;
Wang, Karin .
LAB ON A CHIP, 2023, 23 (06) :1432-1466
[5]   Orthogonal Design of Experiments for Optimization of Lipid Nanoparticles for mRNA Engineering of CAR T Cells [J].
Billingsley, Margaret M. ;
Hamilton, Alex G. ;
Mai, David ;
Patel, Savan K. ;
Swingle, Kelsey L. ;
Sheppard, Neil C. ;
June, Carl H. ;
Mitchell, Michael J. .
NANO LETTERS, 2022, 22 (01) :533-542
[6]   Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo [J].
Boczkowski, D ;
Nair, SK ;
Snyder, D ;
Gilboa, E .
JOURNAL OF EXPERIMENTAL MEDICINE, 1996, 184 (02) :465-472
[7]   Nanomaterial Delivery Systems for mRNA Vaccines [J].
Buschmann, Michael D. ;
Carrasco, Manuel J. ;
Alishetty, Suman ;
Paige, Mikell ;
Alameh, Mohamad Gabriel ;
Weissman, Drew .
VACCINES, 2021, 9 (01) :1-30
[8]   Ionization and structural properties of mRNA lipid nanoparticles influence expression in intramuscular and intravascular administration [J].
Carrasco, Manuel J. ;
Alishetty, Suman ;
Alameh, Mohamad-Gabriel ;
Said, Hooda ;
Wright, Lacey ;
Paige, Mikell ;
Soliman, Ousamah ;
Weissman, Drew ;
Cleveland, Thomas E. ;
Grishaev, Alexander ;
Buschmann, Michael D. .
COMMUNICATIONS BIOLOGY, 2021, 4 (01)
[9]   Dendrimer-Based Lipid Nanoparticles Deliver Therapeutic FAH mRNA to Normalize Liver Function and Extend Survival in a Mouse Model of Hepatorenal Tyrosinemia Type I [J].
Cheng, Qiang ;
Wei, Tuo ;
Jia, Yuemeng ;
Farbiak, Lukas ;
Zhou, Kejin ;
Zhang, Shuyuan ;
Wei, Yonglong ;
Zhu, Hao ;
Siegwart, Daniel J. .
ADVANCED MATERIALS, 2018, 30 (52)
[10]  
Clogston JD, 2011, METHODS MOL BIOL, V697, P63, DOI 10.1007/978-1-60327-198-1_6