Effect of data enhancement on state-of-charge estimation of lithium-ion battery based on deep learning methods

被引:6
作者
Li, Menghan [1 ,2 ]
Li, Chaoran [1 ,2 ]
Chen, Chen [1 ,2 ]
Zhang, Qiang [3 ]
Liu, Xinjian [1 ,2 ]
Liao, Wei [4 ]
Liu, Xiaori [1 ,2 ]
Rao, Zhonghao [1 ,2 ]
机构
[1] Hebei Univ Technol, Hebei Engn Res Ctr Adv Energy Storage Technol & Eq, Sch Energy & Environm Engn, Tianjin 300401, Peoples R China
[2] Hebei Univ Technol, Sch Energy & Environm Engn, Hebei Key Lab Thermal Sci & Energy Clean Utilizat, Tianjin 300401, Peoples R China
[3] Shandong Univ, Sch Energy & Power Engn, 17923 Jingshi Rd, Jinan 250061, Peoples R China
[4] Beijing New Energy Technol Res Inst, Beijing 102399, Peoples R China
关键词
State-of-charge; Average-step method; Gaussian noise injection method; Discrete wavelet transform method; Empirical mode decomposition method; OPEN-CIRCUIT VOLTAGE; NEURAL-NETWORKS;
D O I
10.1016/j.est.2024.110573
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
State-of-charge (SOC) estimation is the key to the safe and efficient utilization of lithium-ion batteries. With the development of deep learning method, SOC estimation methods based on neural networks are widely utilized. However, it has strict requirements on the data used with the neural network-based SOC method, and the widespread noise in the data would cover up the original characteristics of the data. Preprocessing the data to denoise and enhance the data may be able to improve the accuracy of the SOC estimation model, but relevant studies are still lacking. In this paper, average-step method, gaussian noise injection method, discrete wavelet transform method and empirical mode decomposition method are adopted to preprocess the data in order to study the effect of data enhancement on SOC estimation. All the methods are evaluated through a convolutional neural network-long short-term memory (CNN-LSTM) model. The improvements of root mean square error (RMSE), mean absolute error (MAE) and maximum absolute error (MAXE) in total dataset are 40.16 %, 38.00 % and 54.02 % using the average-step method, 3.94 %, 2.00 % and 4.98 % using the gaussian noise injection method, 16.54 %, 18.00 % and 21.87 % using the discrete wavelet transform-average-step method, 13.39 %, 11.00 % and 23.31 % using the empirical mode decomposition-average-step method.
引用
收藏
页数:19
相关论文
共 29 条
  • [1] State-of-Charge Estimation for Lithium-Ion Batteries Using Neural Networks and EKF
    Charkhgard, Mohammad
    Farrokhi, Mohammad
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2010, 57 (12) : 4178 - 4187
  • [2] State-of-charge estimation of Li-ion batteries using deep neural networks: A machine learning approach
    Chemali, Ephrem
    Kollmeyer, Phillip J.
    Preindl, Matthias
    Emadi, Ali
    [J]. JOURNAL OF POWER SOURCES, 2018, 400 : 242 - 255
  • [3] Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression
    Deng, Zhongwei
    Hu, Xiaosong
    Lin, Xianke
    Che, Yunhong
    Xu, Le
    Guo, Wenchao
    [J]. ENERGY, 2020, 205
  • [4] Host load prediction in cloud computing with Discrete Wavelet Transformation (DWT) and Bidirectional Gated Recurrent Unit (BiGRU) network
    Dogani, Javad
    Khunjush, Farshad
    Seydali, Mehdi
    [J]. COMPUTER COMMUNICATIONS, 2023, 198 : 157 - 174
  • [5] State of charge estimation for Li-ion battery based on model from extreme learning machine
    Du, Jiani
    Liu, Zhitao
    Wang, Youyi
    [J]. CONTROL ENGINEERING PRACTICE, 2014, 26 : 11 - 19
  • [6] Graves A, 2012, STUD COMPUT INTELL, V385, P1, DOI [10.1007/978-3-642-24797-2, 10.1162/neco.1997.9.1.1]
  • [7] SOC Estimation of Li-ion Batteries With Learning Rate-Optimized Deep Fully Convolutional Network
    Hannan, M. A.
    How, D. N. T.
    Lipu, M. S. Hossain
    Ker, Pin Jern
    Dong, Z. Y.
    Mansur, M.
    Blaabjerg, Frede
    [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2021, 36 (07) : 7349 - 7353
  • [8] The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
    Huang, NE
    Shen, Z
    Long, SR
    Wu, MLC
    Shih, HH
    Zheng, QN
    Yen, NC
    Tung, CC
    Liu, HH
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1971): : 903 - 995
  • [9] Nonlinear state of charge estimator for hybrid electric vehicle battery
    Kim, Il-Song
    [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2008, 23 (04) : 2027 - 2034
  • [10] Gradient-based learning applied to document recognition
    Lecun, Y
    Bottou, L
    Bengio, Y
    Haffner, P
    [J]. PROCEEDINGS OF THE IEEE, 1998, 86 (11) : 2278 - 2324