Determination of molecular energies via variational-based quantum imaginary time evolution in a superconducting qubit system

被引:3
作者
Zong, Zhiwen [1 ]
Huai, Sainan [2 ]
Cai, Tianqi [2 ]
Jin, Wenyan [1 ]
Zhan, Ze [1 ]
Zhang, Zhenxing [2 ]
Bu, Kunliang [2 ]
Sui, Liyang [1 ]
Fei, Ying [1 ]
Zheng, Yicong [2 ]
Zhang, Shengyu [2 ]
Wu, Jianlan [1 ]
Yin, Yi [1 ]
机构
[1] Zhejiang Univ, Sch Phys, Zhejiang Prov Key Lab Quantum Technol & Device, Hangzhou 310027, Peoples R China
[2] Tencent Quantum Lab, Shenzhen 518057, Peoples R China
来源
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY | 2024年 / 67卷 / 04期
基金
中国国家自然科学基金;
关键词
quantum computation; quantum algorithm; superconducting qubit; MONTE-CARLO; SIMULATIONS; COMPUTATION; ALGORITHM;
D O I
10.1007/s11433-023-2315-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
As a valid tool for solving ground state problems, imaginary time evolution (ITE) is widely used in physical and chemical simulations. Different ITE-based algorithms in their quantum counterpart have recently been proposed and applied to some real systems. We experimentally realize the variational-based quantum imaginary time evolution (QITE) algorithm to simulate the ground state energy of hydrogen (H2) and lithium hydride (LiH) molecules in a superconducting qubit system. The H2 molecule is directly simulated using the 3-qubit circuit with unitary-coupled clusters (UCC) ansatz. We also combine QITE with the cluster mean-field (CMF) method to obtain an effective Hamiltonian. The LiH molecule is correspondingly simulated using the 3-qubit circuit with hardware-efficient ansatz. For comparison, the LiH molecule is also directly simulated using the 4-qubit circuit with UCC ansatz at the equilibrium point. All the experimental results show a convergence within 4 iterations, with high-fidelity ground state energy obtained. For a more complex system in the future, the CMF may allow further grouping of interactions to obtain an effective Hamiltonian, then the hybrid QITE algorithm can possibly simulate a relatively large-scale system with fewer qubits.
引用
收藏
页数:11
相关论文
共 52 条
[1]   Simulations of many-body Fermi systems on a universal quantum computer [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1997, 79 (13) :2586-2589
[2]   Review of quantum Monte Carlo methods and their applications [J].
Acioli, PH .
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 1997, 394 (2-3) :75-85
[3]   Simulated quantum computation of molecular energies [J].
Aspuru-Guzik, A ;
Dutoi, AD ;
Love, PJ ;
Head-Gordon, M .
SCIENCE, 2005, 309 (5741) :1704-1707
[4]   Coherent Josephson Qubit Suitable for Scalable Quantum Integrated Circuits [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Sank, D. ;
Jeffrey, E. ;
Chen, Y. ;
Yin, Y. ;
Chiaro, B. ;
Mutus, J. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Wenner, J. ;
White, T. C. ;
Cleland, A. N. ;
Martinis, John M. .
PHYSICAL REVIEW LETTERS, 2013, 111 (08)
[5]   Qubit Architecture with High Coherence and Fast Tunable Coupling [J].
Chen, Yu ;
Neill, C. ;
Roushan, P. ;
Leung, N. ;
Fang, M. ;
Barends, R. ;
Kelly, J. ;
Campbell, B. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Jeffrey, E. ;
Megrant, A. ;
Mutus, J. Y. ;
O'Malley, P. J. J. ;
Quintana, C. M. ;
Sank, D. ;
Vainsencher, A. ;
Wenner, J. ;
White, T. C. ;
Geller, Michael R. ;
Cleland, A. N. ;
Martinis, John M. .
PHYSICAL REVIEW LETTERS, 2014, 113 (22)
[6]   Direct estimations of linear and nonlinear functionals of a quantum state [J].
Ekert, AK ;
Alves, CM ;
Oi, DKL ;
Horodecki, M ;
Horodecki, P ;
Kwek, LC .
PHYSICAL REVIEW LETTERS, 2002, 88 (21) :2179011-2179014
[7]   A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem [J].
Farhi, E ;
Goldstone, J ;
Gutmann, S ;
Lapan, J ;
Lundgren, A ;
Preda, D .
SCIENCE, 2001, 292 (5516) :472-476
[8]  
Gershgorin S.A., 1931, Proceedings of the Russian Academy of Sciences, V6, P749, DOI DOI 10.1109/TCYB.2020.3015746
[9]   Hartree-Fock on a superconducting qubit quantum computer [J].
AI Quantum G. .
SCIENCE, 2020, 369 (6507) :1084-+
[10]   An adaptive variational algorithm for exact molecular simulations on a quantum computer [J].
Grimsley, Harper R. ;
Economou, Sophia E. ;
Barnes, Edwin ;
Mayhall, Nicholas J. .
NATURE COMMUNICATIONS, 2019, 10 (1)