M-FANet: Multi-Feature Attention Convolutional Neural Network for Motor Imagery Decoding

被引:10
|
作者
Qin, Yiyang [1 ]
Yang, Banghua [2 ,3 ]
Ke, Sixiong [1 ]
Liu, Peng [1 ]
Rong, Fenqi [1 ]
Xia, Xinxing [1 ]
机构
[1] Shanghai Univ, Sch Mech & Elect Engn & Automat, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Res Ctr Brain Comp Engn, Sch Mechatron Engn & Automat, Sch Med, Shanghai 200444, Peoples R China
[3] Minist Educ, Engn Res Ctr Tradit Chinese Med Intelligent Rehabi, Shanghai 201203, Peoples R China
关键词
Brain-computer interface; motor imagery; convolutional neural networks; multi-feature attention; BRAIN-COMPUTER INTERFACES; EEG;
D O I
10.1109/TNSRE.2024.3351863
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Motor imagery (MI) decoding methods are pivotal in advancing rehabilitation and motor control research. Effective extraction of spectral-spatial-temporal features is crucial for MI decoding from limited and low signal-to-noise ratio electroencephalogram (EEG) signal samples based on brain-computer interface (BCI). In this paper, we propose a lightweight Multi-Feature Attention Neural Network (M-FANet) for feature extraction and selection of multi-feature data. M-FANet employs several unique attention modules to eliminate redundant information in the frequency domain, enhance local spatial feature extraction and calibrate feature maps. We introduce a training method called Regularized Dropout (R-Drop) to address training-inference inconsistency caused by dropout and improve the model's generalization capability. We conduct extensive experiments on the BCI Competition IV 2a (BCIC-IV-2a) dataset and the 2019 World robot conference contest-BCI Robot Contest MI (WBCIC-MI) dataset. M-FANet achieves superior performance compared to state-of-the-art MI decoding methods, with 79.28% 4-class classification accuracy (kappa: 0.7259) on the BCIC-IV-2a dataset and 77.86% 3-class classification accuracy (kappa: 0.6650) on the WBCIC-MI dataset. The application of multi-feature attention modules and R-Drop in our lightweight model significantly enhances its performance, validated through comprehensive ablation experiments and visualizations.
引用
收藏
页码:401 / 411
页数:11
相关论文
共 50 条
  • [31] PARRLLEL CONVOLUTIONAL-LINEAR NEURAL NETWORK FOR MOTOR IMAGERY CLASSIFICATION
    Sakhavi, Siavash
    Guan, Cuntai
    Yan, Shuicheng
    2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 2736 - 2740
  • [32] An efficient shallow convolutional decoding network for motor imagery EEG signals
    Li W.
    Xu G.
    Zhang K.
    Zhang S.
    Zhao L.
    Li H.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2023, 57 (10): : 11 - 19
  • [33] Recurrent convolutional neural network model based on temporal and spatial feature for motor imagery classification
    Lee, Seung-Bo
    Kim, Hakseung
    Jeong, Ji-Hoon
    Wang, In-Nea
    Lee, Seong-Whan
    Kim, Dong-Joo
    2019 7TH INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2019, : 152 - 155
  • [34] SincNet-Based Hybrid Neural Network for Motor Imagery EEG Decoding
    Liu, Chang
    Jin, Jing
    Daly, Ian
    Li, Shurui
    Sun, Hao
    Huang, Yitao
    Wang, Xingyu
    Cichocki, Andrzej
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2022, 30 : 540 - 549
  • [35] MCA-Net: Multi-Feature Coding and Attention Convolutional Neural Network for Predicting lncRNA-Disease Association
    Zhang, Yuan
    Ye, Fei
    Gao, Xieping
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (05) : 2907 - 2919
  • [36] A robust multi-branch multi-attention-mechanism EEGNet for motor imagery BCI decoding
    Deng, Haodong
    Li, Mengfan
    Li, Jundi
    Guo, Miaomiao
    Xu, Guizhi
    JOURNAL OF NEUROSCIENCE METHODS, 2024, 405
  • [37] A Study of Unilateral Upper Limb Fine Motor Imagery Decoding Using Frequency-Band Attention Network
    Shi, Tianyu
    Gu, Xiang
    Bi, Hui
    Lv, Jidong
    Liu, Yan
    Dai, Yakang
    Zou, Ling
    IEEE ACCESS, 2024, 12 : 32679 - 32692
  • [38] Convolutional neural network and riemannian geometry hybrid approach for motor imagery classification
    Gao, Chang
    Liu, Wenchao
    Yang, Xian
    NEUROCOMPUTING, 2022, 507 : 180 - 190
  • [39] A composite improved attention convolutional network for motor imagery EEG classification
    Liao, Wenzhe
    Miao, Zipeng
    Liang, Shuaibo
    Zhang, Linyan
    Li, Chen
    FRONTIERS IN NEUROSCIENCE, 2025, 19
  • [40] Electroencephalogram-Based Motor Imagery Signals Classification Using a Multi-Branch Convolutional Neural Network Model with Attention Blocks
    Altuwaijri, Ghadir Ali
    Muhammad, Ghulam
    BIOENGINEERING-BASEL, 2022, 9 (07):