M-FANet: Multi-Feature Attention Convolutional Neural Network for Motor Imagery Decoding

被引:10
|
作者
Qin, Yiyang [1 ]
Yang, Banghua [2 ,3 ]
Ke, Sixiong [1 ]
Liu, Peng [1 ]
Rong, Fenqi [1 ]
Xia, Xinxing [1 ]
机构
[1] Shanghai Univ, Sch Mech & Elect Engn & Automat, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Res Ctr Brain Comp Engn, Sch Mechatron Engn & Automat, Sch Med, Shanghai 200444, Peoples R China
[3] Minist Educ, Engn Res Ctr Tradit Chinese Med Intelligent Rehabi, Shanghai 201203, Peoples R China
关键词
Brain-computer interface; motor imagery; convolutional neural networks; multi-feature attention; BRAIN-COMPUTER INTERFACES; EEG;
D O I
10.1109/TNSRE.2024.3351863
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Motor imagery (MI) decoding methods are pivotal in advancing rehabilitation and motor control research. Effective extraction of spectral-spatial-temporal features is crucial for MI decoding from limited and low signal-to-noise ratio electroencephalogram (EEG) signal samples based on brain-computer interface (BCI). In this paper, we propose a lightweight Multi-Feature Attention Neural Network (M-FANet) for feature extraction and selection of multi-feature data. M-FANet employs several unique attention modules to eliminate redundant information in the frequency domain, enhance local spatial feature extraction and calibrate feature maps. We introduce a training method called Regularized Dropout (R-Drop) to address training-inference inconsistency caused by dropout and improve the model's generalization capability. We conduct extensive experiments on the BCI Competition IV 2a (BCIC-IV-2a) dataset and the 2019 World robot conference contest-BCI Robot Contest MI (WBCIC-MI) dataset. M-FANet achieves superior performance compared to state-of-the-art MI decoding methods, with 79.28% 4-class classification accuracy (kappa: 0.7259) on the BCIC-IV-2a dataset and 77.86% 3-class classification accuracy (kappa: 0.6650) on the WBCIC-MI dataset. The application of multi-feature attention modules and R-Drop in our lightweight model significantly enhances its performance, validated through comprehensive ablation experiments and visualizations.
引用
收藏
页码:401 / 411
页数:11
相关论文
共 50 条
  • [21] DeepRibSt: a multi-feature convolutional neural network for predicting ribosome stalling
    Yuan Zhang
    Sai Zhang
    Xizhi He
    Jing Lu
    Xieping Gao
    Multimedia Tools and Applications, 2021, 80 : 17239 - 17255
  • [22] Multiclass classification of motor imagery tasks based on multi-branch convolutional neural network and temporal convolutional network model
    Yu, Shiqi
    Wang, Zedong
    Wang, Fei
    Chen, Kai
    Yao, Dezhong
    Xu, Peng
    Zhang, Yong
    Wang, Hesong
    Zhang, Tao
    CEREBRAL CORTEX, 2024, 34 (02)
  • [23] DeepRibSt: a multi-feature convolutional neural network for predicting ribosome stalling
    Zhang, Yuan
    Zhang, Sai
    He, Xizhi
    Lu, Jing
    Gao, Xieping
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (11) : 17239 - 17255
  • [24] Exploring a Deeper Convolutional Neural Network Architecture with high dropout for Motor Imagery BCI Decoding
    Alami, Ramtin
    Partovi, Andi
    Goodarzy, Farhad
    2021 9TH IEEE INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2021, : 253 - 257
  • [25] Attention-Based Multiscale Spatial-Temporal Convolutional Network for Motor Imagery EEG Decoding
    Zhang, Yu
    Li, Penghai
    Cheng, Longlong
    Li, Mingji
    Li, Hongji
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 2423 - 2434
  • [26] A multi-feature fusion decoding study for unilateral upper-limb fine motor imagery
    Yang, Liangyu
    Shi, Tianyu
    Lv, Jidong
    Liu, Yan
    Dai, Yakang
    Zou, Ling
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (02) : 2482 - 2500
  • [27] A New Convolutional Neural Network for Motor Imagery Classification
    Zhang, Ruilong
    Gong, Qun
    Zhao, Xinyi
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 8428 - 8432
  • [28] A Multi-Branch Convolutional Neural Network with Squeeze-and-Excitation Attention Blocks for EEG-Based Motor Imagery Signals Classification
    Altuwaijri, Ghadir Ali
    Muhammad, Ghulam
    Altaheri, Hamdi
    Alsulaiman, Mansour
    DIAGNOSTICS, 2022, 12 (04)
  • [29] MSHANet: a multi-scale residual network with hybrid attention for motor imagery EEG decoding
    Li, Mengfan
    Li, Jundi
    Zheng, Xiao
    Ge, Jiahao
    Xu, Guizhi
    COGNITIVE NEURODYNAMICS, 2024, : 3463 - 3476
  • [30] A parallel multi-scale time-frequency block convolutional neural network based on channel attention module for motor imagery classification
    Li, Hongli
    Chen, Hongyu
    Jia, Ziyu
    Zhang, Ronghua
    Yin, Feichao
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 79