M-FANet: Multi-Feature Attention Convolutional Neural Network for Motor Imagery Decoding

被引:10
|
作者
Qin, Yiyang [1 ]
Yang, Banghua [2 ,3 ]
Ke, Sixiong [1 ]
Liu, Peng [1 ]
Rong, Fenqi [1 ]
Xia, Xinxing [1 ]
机构
[1] Shanghai Univ, Sch Mech & Elect Engn & Automat, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Res Ctr Brain Comp Engn, Sch Mechatron Engn & Automat, Sch Med, Shanghai 200444, Peoples R China
[3] Minist Educ, Engn Res Ctr Tradit Chinese Med Intelligent Rehabi, Shanghai 201203, Peoples R China
关键词
Brain-computer interface; motor imagery; convolutional neural networks; multi-feature attention; BRAIN-COMPUTER INTERFACES; EEG;
D O I
10.1109/TNSRE.2024.3351863
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Motor imagery (MI) decoding methods are pivotal in advancing rehabilitation and motor control research. Effective extraction of spectral-spatial-temporal features is crucial for MI decoding from limited and low signal-to-noise ratio electroencephalogram (EEG) signal samples based on brain-computer interface (BCI). In this paper, we propose a lightweight Multi-Feature Attention Neural Network (M-FANet) for feature extraction and selection of multi-feature data. M-FANet employs several unique attention modules to eliminate redundant information in the frequency domain, enhance local spatial feature extraction and calibrate feature maps. We introduce a training method called Regularized Dropout (R-Drop) to address training-inference inconsistency caused by dropout and improve the model's generalization capability. We conduct extensive experiments on the BCI Competition IV 2a (BCIC-IV-2a) dataset and the 2019 World robot conference contest-BCI Robot Contest MI (WBCIC-MI) dataset. M-FANet achieves superior performance compared to state-of-the-art MI decoding methods, with 79.28% 4-class classification accuracy (kappa: 0.7259) on the BCIC-IV-2a dataset and 77.86% 3-class classification accuracy (kappa: 0.6650) on the WBCIC-MI dataset. The application of multi-feature attention modules and R-Drop in our lightweight model significantly enhances its performance, validated through comprehensive ablation experiments and visualizations.
引用
收藏
页码:401 / 411
页数:11
相关论文
共 50 条
  • [11] FBMSNet: A Filter-Bank Multi-Scale Convolutional Neural Network for EEG-Based Motor Imagery Decoding
    Liu, Ke
    Yang, Mingzhao
    Yu, Zhuliang
    Wang, Guoyin
    Wu, Wei
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2023, 70 (02) : 436 - 445
  • [12] A Channel Selection Approach Based on Convolutional Neural Network for Multi-Channel EEG Motor Imagery Decoding
    Mzurikwao, Deogratias
    Samuel, Oluwarotimi Williams
    Asogbon, Mojisola Grace
    Li, Xiangxin
    Li, Guanglin
    Yeo, Woon-Hong
    Efstratiou, Christos
    Ang, Chee Siang
    2019 IEEE SECOND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING (AIKE), 2019, : 195 - 202
  • [13] Holographic convolutional attention neural network for motor imagery decoding based on EEG temporal-spatial frequency features
    Ai, Qingsong
    Liu, Yuang
    Liu, Quan
    Ma, Li
    Chen, Kun
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 104
  • [14] A multiscale feature fusion network based on attention mechanism for motor imagery EEG decoding
    Gao, Dongrui
    Yang, Wen
    Li, Pengrui
    Liu, Shihong
    Liu, Tiejun
    Wang, Manqing
    Zhang, Yongqing
    APPLIED SOFT COMPUTING, 2024, 151
  • [15] Multibranch convolutional neural network with contrastive representation learning for decoding same limb motor imagery tasks
    Phunruangsakao, Chatrin
    Achanccaray, David
    Izumi, Shin-Ichi
    Hayashibe, Mitsuhiro
    FRONTIERS IN HUMAN NEUROSCIENCE, 2022, 16
  • [16] Motor Imagery Classification of Single-Arm Tasks Using Convolutional Neural Network based on Feature Refining
    Lee, Byeong-Hoo
    Jeong, Ji-Hoon
    Shim, Kyung-Hwan
    Kim, Dong-Joo
    2020 8TH INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2020, : 222 - 226
  • [17] Deep Convolutional Neural Network for Decoding Motor Imagery based Brain Computer Interface
    Zhang, Jin
    Yan, Chungang
    Gong, Xiaoliang
    2017 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMMUNICATIONS AND COMPUTING (ICSPCC), 2017,
  • [18] Enhancing Motor Imagery Classification with Residual Graph Convolutional Networks and Multi-Feature Fusion
    Xu, Fangzhou
    Shi, Weiyou
    Lv, Chengyan
    Sun, Yuan
    Guo, Shuai
    Feng, Chao
    Zhang, Yang
    Jung, Tzyy-Ping
    Leng, Jiancai
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2025, 35 (01)
  • [19] MMCNN: A Multi-branch Multi-scale Convolutional Neural Network for Motor Imagery Classification
    Jia, Ziyu
    Lin, Youfang
    Wang, Jing
    Yang, Kaixin
    Liu, Tianhang
    Zhang, Xinwang
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT III, 2021, 12459 : 736 - 751
  • [20] Filter bank sinc-convolutional network with channel self-attention for high performance motor imagery decoding
    Chen, Jiaming
    Wang, Dan
    Yi, Weibo
    Xu, Meng
    Tan, Xiyue
    JOURNAL OF NEURAL ENGINEERING, 2023, 20 (02)