Fast superconvergent solvers for weakly singular Hammerstein equations

被引:1
作者
Arrai, Mohamed [1 ]
Allouch, Chafik [1 ]
Aslimani, Abderrahim [1 ]
机构
[1] Univ Mohammed First, LAMAO Lab, Team MSC, FPN, Nador 62000, Morocco
关键词
Hammerstein equation; Numerical quadrature; Discrete Galerkin method; Discrete collocation method; Weakly singular kernels; Hyperinterpolation projection; Superconvergence; INTEGRAL-EQUATIONS; ITERATED GALERKIN; APPROXIMATION; COLLOCATION;
D O I
10.1007/s11075-023-01706-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article investigates discrete versions of the projection-type and modified projection-type methods for solving Hammerstein integral equations with a weakly singular kernel. The approximating operator utilized is either the orthogonal projection or an interpolatory projection onto a space of piecewise polynomials of degree <= r - 1 with respect to a graded partition of [0, 1]. The study reveals that the proposed methods achieve optimal rates of convergence, demonstrating that the numerical quadrature used to estimate the integrals maintains the same rates of convergence as the continuous methods. The theoretical findings are supported by numerical experiments.
引用
收藏
页码:345 / 372
页数:28
相关论文
共 24 条
[1]  
Ahues M., 2001, SPECTRAL COMPUTATION
[2]   SUPERCONVERGENT PRODUCT INTEGRATION METHOD FOR HAMMERSTEIN INTEGRAL EQUATIONS [J].
Allouch, C. ;
Sbibih, D. ;
Tahrichi, M. .
JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2019, 31 (01) :1-28
[3]   Numerical solutions of weakly singular Hammerstein integral equations [J].
Allouch, C. ;
Sbibih, D. ;
Tahrichi, M. .
APPLIED MATHEMATICS AND COMPUTATION, 2018, 329 :118-128
[4]  
ATKINSON K.E., 1997, NUMERICAL SOLUTION I
[5]  
Browder FE., 1971, CONTRIBUTIONS NONLIN, P425, DOI [10.1016/B978-0-12-775850-3.50014-5, DOI 10.1016/B978-0-12-775850-3.50014-5]
[6]  
Chepanovich RS., 1984, PUBL I MATH BELGR, V35, P119
[7]  
Golberg M.A., 1997, Discrete Projection Methods for Integral Equations
[8]  
GOLBERG MA, 1995, BOUNDARY ELEMENTS XVII, P91
[9]  
GRAHAM IG, 1982, MATH COMPUT, V39, P519, DOI 10.1090/S0025-5718-1982-0669644-3
[10]   ITERATED GALERKIN VERSUS ITERATED COLLOCATION FOR INTEGRAL-EQUATIONS OF THE 2ND KIND [J].
GRAHAM, IG ;
JOE, S ;
SLOAN, IH .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1985, 5 (03) :355-369