Salvianolic acid A alleviates heart failure with preserved ejection fraction via regulating TLR/Myd88/TRAF/NF-κB and p38MAPK/CREB signaling pathways

被引:19
作者
Dawuti, Awaguli [1 ,2 ]
Sun, Shuchan [1 ,2 ]
Wang, Ranran [1 ,2 ]
Gong, Difei [1 ,2 ]
Liu, Ruiqi [1 ,2 ]
Kong, Dewen [1 ,2 ]
Yuan, Tianyi [1 ]
Zhou, Jian [1 ,3 ]
Lu, Yang [1 ,3 ]
Wang, Shoubao [2 ]
Du, Guanhua [1 ]
Fang, Lianhua [1 ,2 ,4 ]
机构
[1] Chinese Acad Med Sci & Peking Union Med Coll, State Key Lab Bioact Subst & Funct Nat Med, Inst Mat Med, Beijing 100050, Peoples R China
[2] Chinese Acad Med Sci & Peking Union Med Coll, Inst Mat Med, Beijing Key Lab Drug Targets Identicat & Drug Scre, Beijing 100050, Peoples R China
[3] Chinese Acad Med Sci & Peking Union Med Coll, Inst Mat Med, Beijing Key Lab Polymorph Drugs, Beijing 100050, Peoples R China
[4] Chinese Acad Med Sci & Peking Union Med Coll, Inst Mat Med, Beijing 100050, Peoples R China
基金
北京市自然科学基金;
关键词
Salvianolic acid A; HFpEF; HFD; L-NAME; Inflammation; TOLL-LIKE RECEPTORS; DIASTOLIC FUNCTION; DYSFUNCTION; INFLAMMATION; HYPERTROPHY; ASSOCIATION; EXPRESSION; DIAGNOSIS; UPDATE; MODEL;
D O I
10.1016/j.biopha.2023.115837
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Heart failure with preserved ejection fraction (HFpEF) is a morbid, fatal, and common syndrome for which lack of evidence-based therapies. Salvianolic acid A (SAA), a major active ingredient of Salvia miltiorrhiza Burge, has shown potential to protect against cardiovascular diseases. This study aims to elucidate whether SAA possessed therapeutic activity against HFpEF and explore the potential mechanism. HFpEF mouse model was established infusing a combination of high-fat diet (HFD) and N omega-nitro-L-arginine methyl ester (L-NAME) for 14 weeks. After 10 weeks of feeding, HFpEF mice were given SAA (2.5, 5, 10 mg/kg) via oral gavage for four weeks. Body weight, blood pressure, blood lipids, glucose tolerance, exercise performance, cardiac systolic/diastolic function, cardiac pathophysiological changes, and inflammatory factors were assessed. Experimental results showed that SAA reduced HFpEF risk factors, such as body weight gain, glucose intolerance, lipid disorders, and increased exercise tolerance in HFpEF mice. Moreover, SAA not only relieved myocardial hypertrophy and fibrosis by reducing interventricular septal wall thickness, left ventricular posterior wall thickness, left ventricular mass, heart index, cardiomyocyte cross-sectional area and cardiac collagen content, but also improved cardiac diastolic function via reducing E/E ' ratio. Finally, SAA inhibited TLR2/TLR4-mediated Myd88 activation and its downstream molecules TRAF6 and IRAK4, which decreases the release of proinflammatory cytokines and mediators through NF-kappa B and p38 MAPK pathways. In conclusion, SAA could attenuate cardiac inflammation and cardiac disfunction by TLR/Myd88/TRAF/NF-kappa B and p38MAPK/CREB signaling pathways in HFpEF mice, which provides evidence for SAA as a potential drug for treatment of HFpEF in clinic.
引用
收藏
页数:13
相关论文
共 67 条
[41]   Impact of acute antioxidant administration on inflammation and vascular function in heart failure with preserved ejection fraction [J].
Ratchford, Stephen M. ;
Clifton, Heather L. ;
Gifford, Jayson R. ;
LaSalle, D. Taylor ;
Thurston, Taylor S. ;
Bunsawat, Kanokwan ;
Alpenglow, Jeremy K. ;
Richardson, Russell S. ;
Wright, Josephine B. ;
Ryan, John J. ;
Wray, D. Walter .
AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 2019, 317 (05) :R607-R614
[42]   p38 MAPK Pathway in the Heart: New Insights in Health and Disease [J].
Romero-Becerra, Rafael ;
Santamans, Ayelen M. ;
Folgueira, Cintia ;
Sabio, Guadalupe .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (19) :1-19
[43]   Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF) associates with TNF receptor-associated factor 6 and TANK-Binding kinase 1, and activates two distinct transcription factors, NF-κB and IFN-regulatory factor-3, in the toll-like receptor signaling [J].
Sato, S ;
Sugiyama, M ;
Yamamoto, M ;
Watanabe, Y ;
Kawai, T ;
Takeda, K ;
Akira, S .
JOURNAL OF IMMUNOLOGY, 2003, 171 (08) :4304-4310
[44]   Global burden of heart failure: a comprehensive and updated review of epidemiology [J].
Savarese, Gianluigi ;
Becher, Peter Moritz ;
Lund, Lars H. ;
Seferovic, Petar ;
Rosano, Giuseppe M. C. ;
Coats, Andrew J. S. .
CARDIOVASCULAR RESEARCH, 2022, 118 (17) :3272-3287
[45]   Metabolic inflammation in heart failure with preserved ejection fraction [J].
Schiattarella, Gabriele G. ;
Rodolico, Daniele ;
Hill, Joseph A. .
CARDIOVASCULAR RESEARCH, 2021, 117 (02) :423-434
[46]   Nitrosative stress drives heart failure with preserved ejection fraction [J].
Schiattarella, Gabriele G. ;
Altamirano, Francisco ;
Tong, Dan ;
French, Kristin M. ;
Villalobos, Elisa ;
Kim, Soo Young ;
Luo, Xiang ;
Jiang, Nan ;
May, Herman I. ;
Wang, Zhao V. ;
Hill, Theodore M. ;
Mammen, Pradeep P. A. ;
Huang, Jian ;
Lee, Dong I. ;
Hahn, Virginia S. ;
Sharma, Kavita ;
Kass, David A. ;
Lavandero, Sergio ;
Gillette, Thomas G. ;
Hill, Joseph A. .
NATURE, 2019, 568 (7752) :351-+
[47]   TLR signalling and association of TLR polymorphism with cardiovascular diseases [J].
Sharma, Swati ;
Garg, Iti ;
Ashraf, Mohammad Z. .
VASCULAR PHARMACOLOGY, 2016, 87 :30-37
[48]   Cellular and Molecular Differences between HFpEF and HFrEF: A Step Ahead in an Improved Pathological Understanding [J].
Simmonds, Steven J. ;
Cuijpers, Ilona ;
Heymans, Stephane ;
Jones, Elizabeth A. V. .
CELLS, 2020, 9 (01)
[49]   Hypertension and Heart Failure [J].
Slivnick, Jeremy ;
Lampert, Brent C. .
HEART FAILURE CLINICS, 2019, 15 (04) :531-+
[50]  
Srinivas B.K., 2023, J. Am. Heart Assoc., V12