Multi-Peak and Propagation Behavior of M-Shape Solitons in (2+1)-Dimensional Integrable Schwarz-Korteweg-de Vries Problem

被引:9
作者
Ahmed, Sarfaraz [1 ]
Seadawy, Aly R. [2 ]
Rizvi, Syed T. R. [1 ]
Raza, Umar [1 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Islamabad 45550, Pakistan
[2] Taibah Univ, Fac Sci, Math Dept, Al Madinah Al Munawarah 41411, Saudi Arabia
关键词
nonlinear waves; computational simulations; homoclinic breather; interaction phenomena; TRAVELING-WAVE SOLUTIONS; LONG-WAVE; EQUATION;
D O I
10.3390/fractalfract7100709
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper examines the propagation of M-shape solitons and their interactions with kink waves to the (2 + 1)-dimensional integrable Schwarz-Korteweg-de Vries (ISKdV) problem by applying the symbolic computation with ansatz functions technique and logarithmic transformation. The governing model usually appears in the nonlinear shallow water waves and fluid mechanics. We discuss various nonlinear waves like multiwave solutions (MSs), homoclinic breather (HB), M-shape solitons, single exponential form (one-kink), and double exponential form (two-kink). These waves have lot of applications in fluid dynamics, nonlinear optics, chemical reaction networks, biological systems, climate science, and material science. We also study interaction among M-shape solitons with kink wave. At the end, we discuss the stability characteristics of all solutions.
引用
收藏
页数:19
相关论文
共 38 条
[1]   Kinky breathers, W-shaped and multi-peak solitons interaction in (2+1)-dimensional nonlinear Schrodinger equation with Kerr law of nonlinearity [J].
Ahmed, Iftikhar ;
Seadawy, Aly R. ;
Lu, Dianchen .
EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (03)
[2]   M-shaped rational solitons and their interaction with kink waves in the Fokas-Lenells equation [J].
Ahmed, Iftikhar ;
Seadawy, Aly R. ;
Lu, Dianchen .
PHYSICA SCRIPTA, 2019, 94 (05)
[3]   Shallow ocean soliton and localized waves in extended (2+1)-dimensional nonlinear evolution equations [J].
Akinyemi, Lanre .
PHYSICS LETTERS A, 2023, 463
[4]   Multiple-solitons for generalized (2+1)-dimensional conformable Korteweg-de Vries-Kadomtsev-Petviashvili equation [J].
Akinyemi, Lanre ;
Senol, Mehmet ;
Tasbozan, Orkun ;
Kurt, Ali .
JOURNAL OF OCEAN ENGINEERING AND SCIENCE, 2022, 7 (06) :536-542
[5]   Integrability, multi-solitons, breathers, lumps and wave interactions for generalized extended Kadomtsev-Petviashvili equation [J].
Akinyemi, Lanre ;
Morazara, Eliso .
NONLINEAR DYNAMICS, 2023, 111 (05) :4683-4707
[6]   Discussion on rational solutions for Nematicons in liquid crystals with Kerr Law [J].
Ali, Kashif ;
Seadawy, Aly R. ;
Ahmed, Sarfaraz ;
Rizvi, Syed T. R. .
CHAOS SOLITONS & FRACTALS, 2022, 160
[7]   Travelling wave solutions of generalized coupled Zakharov-Kuznetsov and dispersive long wave equations [J].
Arshad, M. ;
Seadawy, Aly ;
Lu, Dianchen ;
Wang, Jun .
RESULTS IN PHYSICS, 2016, 6 :1136-1145
[8]   Optical solitons for conformable space-time fractional nonlinear model [J].
Asjad, Muhammad Imran ;
Ullah, Naeem ;
Rehman, Hamood Ur ;
Baleanu, Dumitru .
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2022, 27 (01) :28-41
[9]   Analytic investigation of the (2+1)-dimensional Schwarzian Korteweg-de Vries equation for traveling wave solutions [J].
Aslan, Ismail .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (12) :6013-6017
[10]   Traveling-wave solutions of the Schwarz-Korteweg-de Vries equation in 2+1 dimensions and the Ablowitz-Kaup-Newell-Segur equation through symmetry reductions [J].
Bruzón, MS ;
Gandarias, ML ;
Muriel, C ;
Ramírez, J ;
Romero, FR .
THEORETICAL AND MATHEMATICAL PHYSICS, 2003, 137 (01) :1378-1389