TaGPX1-D overexpression provides salinity and osmotic stress tolerance in Arabidopsis

被引:16
|
作者
Tyagi, Shivi [1 ]
Shumayla [1 ]
Sharma, Yashraaj [1 ,2 ]
Sharma, Alok [1 ]
Pandey, Ashutosh [3 ]
Singh, Kashmir [2 ]
Upadhyay, Santosh Kumar [1 ]
机构
[1] Panjab Univ, Dept Bot, Chandigarh 160014, India
[2] Panjab Univ, Dept Biotechnol, Chandigarh 160014, India
[3] Natl Inst Plant Genome Res, New Delhi, India
关键词
Antioxidant; Bread wheat; Osmotic; Glutathione peroxidase; Salinity; Transgenic; GLUTATHIONE-PEROXIDASE GENES; MOLECULAR CHARACTERIZATION; ASCORBATE-PEROXIDASE; DROUGHT STRESS; EXPRESSION; REDUCTASE; INSIGHTS; ENZYMES; PROTEIN; ROOT;
D O I
10.1016/j.plantsci.2023.111881
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Glutathione peroxidases (GPXs) are known to play an essential role in guarding cells against oxidative stress by catalyzing the reduction of hydrogen peroxide and organic hydroperoxides. The current study aims functional characterization of the TaGPX1-D gene of bread wheat (Triticum aestivum) for salinity and osmotic stress toler-ance. To achieve this, we initially performed the spot assays of TaGPX1-D expressing yeast cells. The growth of recombinant TaGPX1-D expressing yeast cells was notably higher than the control cells under stress conditions. Later, we generated transgenic Arabidopsis plants expressing the TaGPX1-D gene and investigated their tolerance to various stress conditions. The transgenic plants exhibited improved tolerance to both salinity and osmotic stresses compared to the wild-type plants. The higher germination rates, increased antioxidant enzymes activ-ities, improved chlorophyll, carotenoid, proline and relative water contents, and reduced hydrogen peroxide and MDA levels in the transgenic lines supported the stress tolerance mechanism. Overall, this study demonstrated the role of TaGPX1-D in abiotic stress tolerance, and it can be used for improving the tolerance of crops to environmental stressors, such as salinity and osmotic stress in future research.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Overexpression of Arabidopsis ZEP enhances tolerance to osmotic stress
    Park, Hee-Yeon
    Seok, Hye-Yeon
    Park, Bo-Kyung
    Kim, Sun-Ho
    Goh, Chang-Hyo
    Lee, Byeong-ha
    Lee, Choon-Hwan
    Moon, Yong-Hwan
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2008, 375 (01) : 80 - 85
  • [2] Overexpression of TaSIM provides increased drought stress tolerance in transgenic Arabidopsis
    Yu, Yuehua
    Bi, Chenxi
    Wang, Qing
    Ni, Zhiyong
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2019, 512 (01) : 66 - 71
  • [3] Overexpression of a wheat phospholipase D gene, TaPLDα, enhances tolerance to drought and osmotic stress in Arabidopsis thaliana
    Wang, Junbin
    Ding, Bo
    Guo, Yaolin
    Li, Ming
    Chen, Shuaijun
    Huang, Guozhong
    Xie, Xiaodong
    PLANTA, 2014, 240 (01) : 103 - 115
  • [4] Overexpression of a wheat phospholipase D gene, TaPLDα, enhances tolerance to drought and osmotic stress in Arabidopsis thaliana
    Junbin Wang
    Bo Ding
    Yaolin Guo
    Ming Li
    Shuaijun Chen
    Guozhong Huang
    Xiaodong Xie
    Planta, 2014, 240 : 103 - 115
  • [5] Overexpression of Brachypodium distachyon Methionine Sulfoxide Reductase BdMSRB1.1 Gene Contributes to Salinity or Osmotic Stress Tolerance in Arabidopsis
    P. Ding
    Y. Gao
    F. Chen
    Russian Journal of Plant Physiology, 2023, 70
  • [6] Overexpression of Brachypodium distachyon Methionine Sulfoxide Reductase BdMSRB1.1 Gene Contributes to Salinity or Osmotic Stress Tolerance in Arabidopsis
    Ding, P.
    Gao, Y.
    Chen, F.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2023, 70 (09)
  • [7] Overexpression of ZmOPR1 in Arabidopsis enhanced the tolerance to osmotic and salt stress during seed germination
    Gu, Dan
    Liu, Xihui
    Wang, Maoyan
    Zheng, Jun
    Hou, Wei
    Wang, Guoying
    Wang, Jianhua
    PLANT SCIENCE, 2008, 174 (02) : 124 - 130
  • [8] Overexpression of the stress-induced OsWRKY08 improves osmotic stress tolerance in Arabidopsis
    Song Yu
    Jing ShaoJuan
    Yu DiQiu
    CHINESE SCIENCE BULLETIN, 2009, 54 (24): : 4671 - 4678
  • [9] Maize Rab17 overexpression in Arabidopsis plants promotes osmotic stress tolerance
    Figueras, M
    Pujal, J
    Saleh, A
    Savé, R
    Pagès, M
    Goday, A
    ANNALS OF APPLIED BIOLOGY, 2004, 144 (03) : 251 - 257
  • [10] Overexpression of SDH confers tolerance to salt and osmotic stress, but decreases ABA sensitivity in Arabidopsis
    Shi, X. -P.
    Ren, J. -J.
    Yu, Q.
    Zhou, S. -M.
    Ren, Q. -P.
    Kong, L. -J.
    Wang, X. -L.
    PLANT BIOLOGY, 2018, 20 (02) : 327 - 337