SELF-SUPERVISED LEARNING FOR INSAR PHASE AND COHERENCE ESTIMATION

被引:1
|
作者
Sica, Francescopaolo [1 ]
Sanjeevamurthy, Pavan Muguda [1 ]
Schmitt, Michael [1 ]
机构
[1] Univ Bundeswehr, Dept Aerosp Engn, Munich, Germany
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
关键词
synthetic aperture radar; SAR; InSAR; deep learning; self-supervised learning;
D O I
10.1109/IGARSS52108.2023.10281641
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper focuses on the estimation of interferometric SAR parameters, a step that precedes the entire interferometric processing chain to produce derived information such as digital elevation models and ground displacement. Deep learning, especially convolutional neural networks (CNN), has revolutionized image denoising and has recently received considerable attention. However, traditional supervised approaches require labeled images for training, which are generally unavailable or inaccurate, especially in remote sensing applications. To overcome this limitation, semiand self-supervised denoising approaches have recently been proposed. These can learn from exclusively noisy samples, which can be obtained from pairs of noisy images or from noisy values within the same image. In this paper, we build on the foundation of these self-supervised learning methods, in particular, we borrow concepts from the Noise2Void and Noise2Self approaches, which have already shown excellent performance in various image denoising tasks. We extend this method to address the challenges specific to InSAR phase and coherence estimation, where the complex-valued nature of SAR interferograms poses unique processing considerations.
引用
收藏
页码:722 / 725
页数:4
相关论文
共 50 条
  • [41] SELF-SUPERVISED DEEP LEARNING FOR FISHEYE IMAGE RECTIFICATION
    Chao, Chun-Hao
    Hsu, Pin-Lun
    Lee, Hung-Yi
    Wang, Yu-Chiang Frank
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 2248 - 2252
  • [42] Self-supervised representation learning for surgical activity recognition
    Paysan, Daniel
    Haug, Luis
    Bajka, Michael
    Oelhafen, Markus
    Buhmann, Joachim M.
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2021, 16 (11) : 2037 - 2044
  • [43] Self-supervised representation learning for SAR change detection
    Davis, Eric K.
    Houglund, Ian
    Franz, Douglas
    Allen, Michael
    ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XXX, 2023, 12520
  • [44] Heuristic Attention Representation Learning for Self-Supervised Pretraining
    Van Nhiem Tran
    Liu, Shen-Hsuan
    Li, Yung-Hui
    Wang, Jia-Ching
    SENSORS, 2022, 22 (14)
  • [45] Self-supervised learning for outlier detection
    Diers, Jan
    Pigorsch, Christian
    STAT, 2021, 10 (01):
  • [46] Self-Supervised Learning for Recommender System
    Huang, Chao
    Wang, Xiang
    He, Xiangnan
    Yin, Dawei
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 3440 - 3443
  • [47] Contrastive self-supervised learning for neurodegenerative disorder classification
    Gryshchuk, Vadym
    Singh, Devesh
    Teipel, Stefan
    Dyrba, Martin
    ADNI Study Grp
    AIBL Study Grp
    FTLDNI Study Grp
    FRONTIERS IN NEUROINFORMATICS, 2025, 19
  • [48] Self-Supervised Representation Learning for Document Image Classification
    Siddiqui, Shoaib Ahmed
    Dengel, Andreas
    Ahmed, Sheraz
    IEEE ACCESS, 2021, 9 : 164358 - 164367
  • [49] Self-supervised representation learning for surgical activity recognition
    Daniel Paysan
    Luis Haug
    Michael Bajka
    Markus Oelhafen
    Joachim M. Buhmann
    International Journal of Computer Assisted Radiology and Surgery, 2021, 16 : 2037 - 2044
  • [50] Contrastive Self-supervised Learning in Recommender Systems: A Survey
    Jing, Mengyuan
    Zhu, Yanmin
    Zang, Tianzi
    Wang, Ke
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (02)