Hyperspectral Image Super-Resolution Algorithm Based on Graph Regular Tensor Ring Decomposition

被引:4
|
作者
Sun, Shasha [1 ]
Bao, Wenxing [1 ]
Qu, Kewen [1 ]
Feng, Wei [2 ]
Zhang, Xiaowu [1 ]
Ma, Xuan [1 ]
机构
[1] North Minzu Univ, Sch Comp Sci & Engn, Yinchuan 750021, Peoples R China
[2] Xidian Univ, Sch Elect Engn, Xian 710071, Peoples R China
关键词
hyperspectral images; super-resolution; graph regular; spectral coherence; tensor ring decomposition; COMPONENT-SUBSTITUTION; MULTISPECTRAL IMAGES; FUSION; SPARSE; REPRESENTATION; FACTORIZATION; NETWORK;
D O I
10.3390/rs15204983
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper introduces a novel hyperspectral image super-resolution algorithm based on graph-regularized tensor ring decomposition aimed at resolving the challenges of hyperspectral image super-resolution. This algorithm seamlessly integrates graph regularization and tensor ring decomposition, presenting an innovative fusion model that effectively leverages the spatial structure and spectral information inherent in hyperspectral images. At the core of the algorithm lies an iterative optimization process embedded within the objective function. This iterative process incrementally refines latent feature representations. It incorporates spatial smoothness constraints and graph regularization terms to enhance the quality of super-resolution reconstruction and preserve image features. Specifically, low-resolution hyperspectral images (HSIs) and high-resolution multispectral images (MSIs) are obtained through spatial and spectral downsampling, which are then treated as nodes in a constructed graph, efficiently fusing spatial and spectral information. By utilizing tensor ring decomposition, HSIs and MSIs undergo feature decomposition, and the objective function is formulated to merge reconstructed results with the original images. Through a multi-stage iterative optimization procedure, the algorithm progressively enhances latent feature representations, leading to super-resolution hyperspectral image reconstruction. The algorithm's significant achievements are demonstrated through experiments, producing sharper, more detailed high-resolution hyperspectral images (HRIs) with an improved reconstruction quality and retained spectral information. By combining the advantages of graph regularization and tensor ring decomposition, the proposed algorithm showcases substantial potential and feasibility within the domain of hyperspectral image super-resolution.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] Super-resolution reconstruction algorithm based on relevance vector machine for hyperspectral image
    Wang, Xiaofei
    Yan, Qiujing
    Zhang, Junping
    Wang, Aihua
    Zhongguo Jiguang/Chinese Journal of Lasers, 2014, 41
  • [32] Joint generalized singular value decomposition and tensor decomposition for image super-resolution
    Fang, Ying
    Ling, Bingo Wing-Kuen
    Lin, Yuxin
    Huang, Ziyin
    Chan, Yui-Lam
    SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (03) : 849 - 856
  • [33] Joint generalized singular value decomposition and tensor decomposition for image super-resolution
    Ying Fang
    Bingo Wing-Kuen Ling
    Yuxin Lin
    Ziyin Huang
    Yui-Lam Chan
    Signal, Image and Video Processing, 2022, 16 : 849 - 856
  • [34] Difference Curvature Multidimensional Network for Hyperspectral Image Super-Resolution
    Zhang, Chi
    Zhang, Mingjin
    Li, Yunsong
    Gao, Xinbo
    Qiu, Shi
    REMOTE SENSING, 2021, 13 (17)
  • [35] Interactformer: Interactive Transformer and CNN for Hyperspectral Image Super-Resolution
    Liu, Yaoting
    Hu, Jianwen
    Kang, Xudong
    Luo, Jing
    Fan, Shaosheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [36] Model Inspired Autoencoder for Unsupervised Hyperspectral Image Super-Resolution
    Liu, Jianjun
    Wu, Zebin
    Xiao, Liang
    Wu, Xiao-Jun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [37] IMAGE FUSION FOR HYPERSPECTRAL IMAGE SUPER-RESOLUTION
    Irmak, Hasan
    Akar, Gozde Bozdagi
    Yuksel, Seniha Esen
    2018 9TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2018,
  • [38] Synthetic Data Pretraining for Hyperspectral Image Super-Resolution
    Aiello, Emanuele
    Agarla, Mirko
    Valsesia, Diego
    Napoletano, Paolo
    Bianchi, Tiziano
    Magli, Enrico
    Schettini, Raimondo
    IEEE ACCESS, 2024, 12 : 65024 - 65031
  • [39] Deep Recursive Network for Hyperspectral Image Super-Resolution
    Wei, Wei
    Nie, Jiangtao
    Li, Yong
    Zhang, Lei
    Zhang, Yanning
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2020, 6 (06) : 1233 - 1244
  • [40] StructureColor Preserving Network for Hyperspectral Image Super-Resolution
    Pan, Bin
    Qu, Qiaoying
    Xu, Xia
    Shi, Zhenwei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60