Task Offloading in MEC-Aided Satellite-Terrestrial Networks: A Reinforcement Learning Approach

被引:1
|
作者
Wei, Peng [1 ]
Feng, Wei [1 ]
Wang, Kaiwen [1 ]
Chen, Yunfei [2 ]
Ge, Ning [1 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[2] Univ Durham, Dept Engn, South Rd, Durham DH1 3LE, England
基金
中国国家自然科学基金;
关键词
Mobile edge computing; reinforcement learning; satellite-terrestrial network; task offloading; velocity control; MOBILE; OPTIMIZATION; MIGRATION; AWARE;
D O I
10.1109/ICC45041.2023.10279035
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Network-enabled robots have become important to support future machine-assisted and unmanned applications. To provide high-quality services for wide-area robots, hybrid satellite-terrestrial networks are a key technology. Via hybrid networks, computation-intensive and latency-sensitive tasks of robots can be offloaded to mobile edge computing (MEC) servers. However, due to the mobility of mobile robots and unreliable wireless network environments, excessive local computations and frequent service migrations may significantly increase the service delay. To address this issue, this paper aims to minimize the average task completion time for MEC-based offloading for satellite-terrestrial-network-enabled robots. Different from conventional mobility-aware schemes, the proposed scheme is to make the offloading decision by jointly considering the mobility control of robots. A joint optimization problem of task offloading and velocity control is formulated. Using Lyapunov optimization, the original optimization is decomposed into a velocity control subproblem and a task offloading subproblem. Then, based on the Markov decision process (MDP), a dual-agent reinforcement learning (RL) algorithm is proposed. Simulation results show that the proposed scheme can effectively reduce the service delay.
引用
收藏
页码:710 / 715
页数:6
相关论文
共 50 条
  • [21] An online integrated satellite-terrestrial IoT task offloading and service deployment strategy
    Sun, Jiayu
    Wang, Huiqiang
    Sun, Jiayue
    Lv, Hongwu
    Liu, Jingyao
    Feng, Guangsheng
    INTERNET OF THINGS, 2024, 26
  • [22] IN-NETWORK CACHING FOR HYBRID SATELLITE-TERRESTRIAL NETWORKS USING DEEP REINFORCEMENT LEARNING
    Garg, Navneet
    Sellathurai, Mathini
    Ratnarajah, Tharmalingam
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 8797 - 8801
  • [23] Computation Offloading and Resource Allocation in MEC-Enabled Integrated Aerial-Terrestrial Vehicular Networks: A Reinforcement Learning Approach
    Waqar, Noor
    Hassan, Syed Ali
    Mahmood, Aamir
    Dev, Kapal
    Dinh-Thuan Do
    Gidlund, Mikael
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (11) : 21478 - 21491
  • [24] A Hybrid Deep Reinforcement Learning Approach for Dynamic Task Offloading in NOMA-MEC System
    Shang, Ce
    Sun, Yan
    Luo, Hong
    2022 19TH ANNUAL IEEE INTERNATIONAL CONFERENCE ON SENSING, COMMUNICATION, AND NETWORKING (SECON), 2022, : 434 - 442
  • [25] Dual Network Computation Offloading Based on DRL for Satellite-Terrestrial Integrated Networks
    Li, Dongbo
    Sun, Yuchen
    Peng, Jielun
    Cheng, Siyao
    Yin, Zhisheng
    Cheng, Nan
    Liu, Jie
    Li, Zhijun
    Xu, Chenren
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2025, 24 (03) : 2270 - 2284
  • [26] Cost-Effective Hybrid Computation Offloading in Satellite-Terrestrial Integrated Networks
    Zhang, Xinyuan
    Liu, Jiang
    Xiong, Zehui
    Huang, Yudong
    Zhang, Ran
    Mao, Shiwen
    Han, Zhu
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (22): : 36786 - 36800
  • [27] Deep Reinforcement Learning for Task Offloading in UAV-Aided Smart Farm Networks
    Nguyen, Anne Catherine
    Pamuklu, Turgay
    Syed, Aisha
    Kennedy, W. Sean
    Erol-Kantarci, Melike
    2022 IEEE FUTURE NETWORKS WORLD FORUM, FNWF, 2022, : 270 - 275
  • [28] A deep reinforcement approach for computation offloading in MEC dynamic networks
    Fan, Yibiao
    Cai, Xiaowei
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2024, 2024 (01)
  • [29] Deep Reinforcement Learning-Based Resource Allocation for RSMA in LEO Satellite-Terrestrial Networks
    Huang, Jingfei
    Yang, Yang
    Lee, Jemin
    He, Dazhong
    Li, Yonghui
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2024, 72 (03) : 1341 - 1354
  • [30] A hybrid satellite-terrestrial approach to aeronautical communication networks
    Kerczewski, RJ
    Chomos, GJ
    Griner, JH
    Mainger, SW
    Martzaklis, KS
    Kachmar, BA
    COLLECTION OF THE 18TH AIAA INTERNATIONAL COMMUNICATIONS SATELLITE SYSTEMS CONFERENCE AND EXHIBIT, TECHNICAL PAPERS, VOLS 1 AND 2, 2000, : 892 - 900