Energy harvesting using two-dimensional magnesiochromite (MgCr2O4)

被引:5
|
作者
Mahapatra, P. L. [1 ]
Singh, A. K. [2 ]
Tromer, R. [3 ,4 ]
Kumbhakar, P. [2 ,5 ]
Sinha, S. K. [6 ]
Lahiri, B. [7 ]
Kundu, T. K. [2 ]
Galvao, D. S. [3 ,4 ]
Tiwary, C. S. [2 ]
机构
[1] Indian Inst Technol, Sch Nano Sci & Technol, Kharagpur 721302, West Bengal, India
[2] Indian Inst Technol, Met & Mat Engn, Kharagpur 721302, India
[3] Univ Estadual Campinas, Appl Phys Dept, Campinas, SP, Brazil
[4] Univ Estadual Campinas, Ctr Comp Engn & Sci, Campinas, SP, Brazil
[5] CHRIST Deemed be Univ, Dept Phys & Elect, Bangalore 560029, India
[6] Indian Inst Sci, Dept Mat Engn, Bangalore 560012, India
[7] Indian Inst Technol, Dept Elect & Elect Commun Engn, Kharagpur 721302, India
关键词
Two-dimensional material; Flexoelectricity; DFT; Device; RAMAN; CHALLENGES;
D O I
10.1016/j.mtnano.2023.100374
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Two-dimensional (2D) materials with high surface activity can be utilized for harvesting energy from small mechanical sources using flexoelectricity. In the present work, we have synthesized an atomically thin 2D spinel MgCr2O4 by a liquid-phase exfoliation process, and characterization shows the preferential exfoliation along the (111) plane with low formation energy. The fabricated flexoelectric device produces an electrical response up to-3 V (peak-to-peak voltage) upon pressing and releasing the cell with-0.98 N force. Furthermore, the energy harvesting properties of 2D MgCr2O4 are explored by combining bending with other sources of external energy, with applied varying magnetic flux (Vmax 1/4-2.6 V) and temperature with 0.9 N force (Vmax 1/4-18 V). Our calculations determine that 2D MgCr2O4 has a flexoelectric coefficient of approximately mXZXZ 1/4 0.005 nC/m. Overall, the results indicate that 2D MgCr2O4 is a very promising material for the next generation of self-powered wearable electronics and energy harvesting.& COPY; 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Orientation-dependent stabilization of MgCr2O4 spinel thin films
    Wen, Fangdi
    Liu, Xiaoran
    Kareev, Mikhail
    Wu, Tsung-Chi
    Terilli, Michael
    Chakhalian, Jak
    Shafer, Padraic
    Arenholz, Elke
    PHYSICAL REVIEW B, 2020, 102 (16)
  • [42] Emergence of Highly Degenerate Excited States in the Frustrated Magnet MgCr2O4
    Tomiyasu, K.
    Yokobori, T.
    Kousaka, Y.
    Bewley, R. I.
    Guidi, T.
    Watanabe, T.
    Akimitsu, J.
    Yamada, K.
    PHYSICAL REVIEW LETTERS, 2013, 110 (07)
  • [43] THERMAL EXPANSION OF SPINELS MGCR2O4, MGA12O4 AND MGFE2O4
    KAPRALIK, I
    CHEMICKE ZVESTI, 1969, 23 (09): : 665 - &
  • [44] INFLUENCE OF SOLID SOLUTION FORMATION ON THE SOLID STATE SINTERING OF MgCr2O4
    Zargar, Hamidreza
    Oprea, George
    Troczynski, Tom
    PROCEEDINGS OF THE UNIFIED INTERNATIONAL TECHNICAL CONFERENCE ON REFRACTORIES (UNITECR 2013), 2014, : 313 - 317
  • [45] Synthesis and Characterization of MgCr2O4:Co2+ Fabricated by a Microwave Method
    Lu, Hailiang
    Ma, Wenling
    Zhao, Hongxia
    Du, Jiyong
    Yu, Xiaohua
    MATERIALS AND MANUFACTURING PROCESSES, 2011, 26 (10) : 1233 - 1235
  • [46] Mechanism of humidity sensing of Ti-doped MgCr2O4 ceramics
    Pingale, SS
    Patil, SF
    Vinod, MP
    Pathak, G
    Vijayamohanan, K
    MATERIALS CHEMISTRY AND PHYSICS, 1996, 46 (01) : 72 - 76
  • [47] Magnetic susceptibility of the frustrated spinels ZnCr2O4, MgCr2O4 and CdCr2O4
    Kant, Ch.
    Deisenhofer, J.
    Tsurkan, V.
    Loidl, A.
    INTERNATIONAL CONFERENCE ON MAGNETISM (ICM 2009), 2010, 200
  • [48] Compressional behavior of MgCr2O4 spinel from first-principles simulation
    ZHANG YanYao
    LIU Xi
    XIONG ZhiHua
    ZHANG ZhiGang
    ScienceChina(EarthSciences), 2016, 59 (05) : 989 - 996
  • [50] MECHANISMS OF FORMATION OF MGCR2O4 SPINEL FROM MGO AND CR2O3
    NAGATA, K
    NISHIWAKI, R
    MARUYAMA, T
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 1991, 77 (06): : 783 - 789