Energy harvesting using two-dimensional magnesiochromite (MgCr2O4)

被引:5
|
作者
Mahapatra, P. L. [1 ]
Singh, A. K. [2 ]
Tromer, R. [3 ,4 ]
Kumbhakar, P. [2 ,5 ]
Sinha, S. K. [6 ]
Lahiri, B. [7 ]
Kundu, T. K. [2 ]
Galvao, D. S. [3 ,4 ]
Tiwary, C. S. [2 ]
机构
[1] Indian Inst Technol, Sch Nano Sci & Technol, Kharagpur 721302, West Bengal, India
[2] Indian Inst Technol, Met & Mat Engn, Kharagpur 721302, India
[3] Univ Estadual Campinas, Appl Phys Dept, Campinas, SP, Brazil
[4] Univ Estadual Campinas, Ctr Comp Engn & Sci, Campinas, SP, Brazil
[5] CHRIST Deemed be Univ, Dept Phys & Elect, Bangalore 560029, India
[6] Indian Inst Sci, Dept Mat Engn, Bangalore 560012, India
[7] Indian Inst Technol, Dept Elect & Elect Commun Engn, Kharagpur 721302, India
关键词
Two-dimensional material; Flexoelectricity; DFT; Device; RAMAN; CHALLENGES;
D O I
10.1016/j.mtnano.2023.100374
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Two-dimensional (2D) materials with high surface activity can be utilized for harvesting energy from small mechanical sources using flexoelectricity. In the present work, we have synthesized an atomically thin 2D spinel MgCr2O4 by a liquid-phase exfoliation process, and characterization shows the preferential exfoliation along the (111) plane with low formation energy. The fabricated flexoelectric device produces an electrical response up to-3 V (peak-to-peak voltage) upon pressing and releasing the cell with-0.98 N force. Furthermore, the energy harvesting properties of 2D MgCr2O4 are explored by combining bending with other sources of external energy, with applied varying magnetic flux (Vmax 1/4-2.6 V) and temperature with 0.9 N force (Vmax 1/4-18 V). Our calculations determine that 2D MgCr2O4 has a flexoelectric coefficient of approximately mXZXZ 1/4 0.005 nC/m. Overall, the results indicate that 2D MgCr2O4 is a very promising material for the next generation of self-powered wearable electronics and energy harvesting.& COPY; 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] MAGNESIOCHROMITE (MgCr2O4) SYNTHESIS: EFFECT OF MECHANICAL AND MICROWAVE PRETREATMENT
    Kosenko, N. F.
    Filatova, N. V.
    Egorova, A. A.
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA I KHIMICHESKAYA TEKHNOLOGIYA, 2020, 63 (08): : 96 - 102
  • [2] The reaction MgCr2O4 + SiO2 = Cr2O3 + MgSiO3 and the free energy of formation of magnesiochromite (MgCr2O4)
    Stephan Klemme
    Hugh S. C. O'Neill
    Contributions to Mineralogy and Petrology, 1997, 130 : 59 - 65
  • [3] The reaction MgCr2O4+SiO2=Cr2O3+MgSiO3 and the free energy of formation of magnesiochromite (MgCr2O4)
    Klemme, S
    O'Neill, HS
    CONTRIBUTIONS TO MINERALOGY AND PETROLOGY, 1997, 130 (01) : 59 - 65
  • [4] STRUCTURAL DISTORTIONS IN MGCR2O4
    GRIMES, NW
    JOURNAL OF PHYSICS PART C SOLID STATE PHYSICS, 1971, 4 (16): : L342 - &
  • [5] GROWTH OF MGCR2O4 WHISKERS
    HASHIMOTO, S
    YAMAGUCHI, A
    JOURNAL OF CRYSTAL GROWTH, 1995, 154 (3-4) : 329 - 333
  • [6] RADIATION CONVERSIONS IN MGCR2O4
    CHUKALKIN, YG
    PETROV, VV
    DUBROVINA, IN
    GOSHCHITSKII, BN
    INORGANIC MATERIALS, 1982, 18 (06) : 894 - 896
  • [7] REDUCTION OF PICROCHROMITE (MGCR2O4) WITH CARBON
    KATAYAMA, HG
    JOURNAL OF THE JAPAN INSTITUTE OF METALS, 1977, 41 (05) : 427 - 431
  • [8] MgCr2O4 and MgCr2O4/Ag nanostructures: Facile size-controlled synthesis and their photocatalytic performance for destruction of organic contaminants
    Abbasi, Ali
    Sajadi, Seyed Milad Safar
    Amiri, Omid
    Hamadanian, Masood
    Moayedi, Hossein
    Salavati-Niasari, Masoud
    Beigi, Mandi Mohammad
    COMPOSITES PART B-ENGINEERING, 2019, 175
  • [9] INFLUENCE OF OXYGEN ACTIVITY ON SINTERING OF MGCR2O4
    ANDERSON, HU
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1974, 57 (01) : 34 - 37
  • [10] Pressure-induced phase transition study of magnesiochromite (MgCr2O4) by Raman spectroscopy and X-ray diffraction
    Yong, Wenjun
    Botis, Sanda
    Shieh, Sean R.
    Shi, Weiguang
    Withers, Anthony C.
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2012, 196 : 75 - 82