Fractional centered difference schemes and banded preconditioners for nonlinear Riesz space variable-order fractional diffusion equations

被引:5
|
作者
Wang, Qiu-Ya [1 ]
She, Zi-Hang [1 ]
Lao, Cheng-Xue [1 ]
Lin, Fu-Rong [1 ]
机构
[1] Shantou Univ, Dept Math, Shantou 515063, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Variable-order fractional derivative; Fractional centered difference scheme; Stability; Convergence; Banded preconditioner; STABILITY; CONVERGENCE; ACCURACY;
D O I
10.1007/s11075-023-01592-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, high-order finite difference methods are proposed to solve the initial-boundary value problem for one- and two-dimensional Riesz space variable-order fractional diffusion equations. We first introduce fractional centered difference (FCD) and weighted and shifted fractional centered difference (WSFCD) schemes for Riesz space variable-order fractional derivatives. Then the Crank-Nicolson (CN) scheme and the linearly implicit conservative (LIC) difference scheme are applied to discretize the time derivative in linear and nonlinear problems, respectively. Thus, we get CN-FCD and CN-WSFCD schemes, and LIC-FCD and LIC-WSFCD schemes, respectively. Theoretical results about the stability and convergence for the above-mentioned schemes are presented and proved. Banded preconditioners are introduced to speed up GMRES methods for solving the discretization linear systems. The spectral property of the preconditioned matrix is analyzed. Numerical results show that the proposed schemes and preconditioners are very efficient.
引用
收藏
页码:859 / 895
页数:37
相关论文
共 50 条