Fractional centered difference schemes and banded preconditioners for nonlinear Riesz space variable-order fractional diffusion equations

被引:5
|
作者
Wang, Qiu-Ya [1 ]
She, Zi-Hang [1 ]
Lao, Cheng-Xue [1 ]
Lin, Fu-Rong [1 ]
机构
[1] Shantou Univ, Dept Math, Shantou 515063, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Variable-order fractional derivative; Fractional centered difference scheme; Stability; Convergence; Banded preconditioner; STABILITY; CONVERGENCE; ACCURACY;
D O I
10.1007/s11075-023-01592-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, high-order finite difference methods are proposed to solve the initial-boundary value problem for one- and two-dimensional Riesz space variable-order fractional diffusion equations. We first introduce fractional centered difference (FCD) and weighted and shifted fractional centered difference (WSFCD) schemes for Riesz space variable-order fractional derivatives. Then the Crank-Nicolson (CN) scheme and the linearly implicit conservative (LIC) difference scheme are applied to discretize the time derivative in linear and nonlinear problems, respectively. Thus, we get CN-FCD and CN-WSFCD schemes, and LIC-FCD and LIC-WSFCD schemes, respectively. Theoretical results about the stability and convergence for the above-mentioned schemes are presented and proved. Banded preconditioners are introduced to speed up GMRES methods for solving the discretization linear systems. The spectral property of the preconditioned matrix is analyzed. Numerical results show that the proposed schemes and preconditioners are very efficient.
引用
收藏
页码:859 / 895
页数:37
相关论文
共 50 条
  • [1] Fractional centered difference schemes and banded preconditioners for nonlinear Riesz space variable-order fractional diffusion equations
    Qiu-Ya Wang
    Zi-Hang She
    Cheng-Xue Lao
    Fu-Rong Lin
    Numerical Algorithms, 2024, 95 : 859 - 895
  • [2] Crank-Nicolson-weighted-shifted-Grunwald-difference schemes for space Riesz variable-order fractional diffusion equations
    Lin, Fu-Rong
    Wang, Qiu-Ya
    Jin, Xiao-Qing
    NUMERICAL ALGORITHMS, 2021, 87 (02) : 601 - 631
  • [3] Banded Preconditioners for Riesz Space Fractional Diffusion Equations
    Zi-Hang She
    Cheng-Xue Lao
    Hong Yang
    Fu-Rong Lin
    Journal of Scientific Computing, 2021, 86
  • [4] Banded Preconditioners for Riesz Space Fractional Diffusion Equations
    She, Zi-Hang
    Lao, Cheng-Xue
    Yang, Hong
    Lin, Fu-Rong
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 86 (03)
  • [5] Crank-Nicolson-weighted-shifted-Grünwald-difference schemes for space Riesz variable-order fractional diffusion equations
    Fu-Rong Lin
    Qiu-Ya Wang
    Xiao-Qing Jin
    Numerical Algorithms, 2021, 87 : 601 - 631
  • [6] FINITE DIFFERENCE SCHEMES FOR VARIABLE-ORDER TIME FRACTIONAL DIFFUSION EQUATION
    Sun, Hongguang
    Chen, Wen
    Li, Changpin
    Chen, Yangquan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (04):
  • [7] Temporal second order difference schemes for the multi-dimensional variable-order time fractional sub-diffusion equations
    Du, Ruilian
    Alikhanov, Anatoly A.
    Sun, Zhi-Zhong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (10) : 2952 - 2972
  • [8] A finite difference method for elliptic equations with the variable-order fractional derivative
    Shi, Siyuan
    Hao, Zhaopeng
    Du, Rui
    NUMERICAL ALGORITHMS, 2024,
  • [9] Fourth order finite difference schemes for time-space fractional sub-diffusion equations
    Pang, Hong-Kui
    Sun, Hai-Wei
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (06) : 1287 - 1302
  • [10] TEMPORAL SECOND-ORDER FINITE DIFFERENCE SCHEMES FOR VARIABLE-ORDER TIME-FRACTIONAL WAVE EQUATIONS
    Du, Rui-lian
    Sun, Zhi-zhong
    Wang, Hong
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (01) : 104 - 132