Identification of the toxic effects of heavy metals on phytoplankton by the analysis of chlorophyll fluorescence induction curves using machine learning

被引:0
|
作者
Plyusnina, T. Yu. [1 ]
Chervitsov, R. N. [1 ]
Khrushchev, S. S. [1 ]
Kiseleva, D. G. [1 ]
V. Drozdenko, T. [2 ]
Tikhomirova, E. I. [3 ]
Riznichenko, G. Yu. [1 ]
Antal, T. K. [2 ]
机构
[1] Lomonosov Moscow State Univ, 1 Kolmogorova St, Moscow 119991, Russia
[2] Pskov State Univ, 2 Lenina Sq, Pskov 180000, Russia
[3] Yuri Gagarin State Tech Univ Saratov, 77 Politekhn Skaya St, Saratov 410054, Russia
来源
THEORETICAL AND APPLIED ECOLOGY | 2023年 / 02期
关键词
heavy metals; aquatic ecosystems; phytoplankton; environmental monitoring; chlorophyll fluorescence; photosynthesis; machine learning; cluster analysis; CULTIVARS;
D O I
10.25750/1995-4301-2023-2-126-134
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The creation of a network of autonomous stations for bioindication of water bodies state requires the development of methods for analyzing large data arrays. The combination of machine learning methods with traditional statistical methods is used to identify implicit patterns in the dataset for the effect of heavy metals on natural phytoplankton. The array of experimental data consists of 465 fluorescence induction curves measured on phytoplankton samples from 9 water bodies of the Pskov region, and reflecting the dynamics of electron transfer in the photosynthetic apparatus. Each curve is characterized by 14 JIP-test parameters, some of which directly describe the shape of the curve; the others connect the shape of the curve with the energy flows that occur in the photosynthetic apparatus under illumination. Cluster analysis based on a set of JIP-test parameters was used to distinguish photosynthetic activity first among phytoplankton samples in control and then under long-term exposure to cadmium and chromium salts. In the control samples, two groups were identified that differ in the photosynthetic activity of phytoplankton. It is assumed that the lower photosynthetic activity of phytoplankton samples is associated with anthropogenic pressure on the water bodies. It was shown that the samples with initially low photosynthetic activity responded to the toxic effect of heavy metals at later periods of incubation com-pared to more active samples. The proposed approach can be easily scaled to analyze large arrays of experimental data that makes it a promising tool for the early detection of toxic pollution of natural waters.
引用
收藏
页码:126 / 134
页数:9
相关论文
共 50 条
  • [31] Identification of IT Incidents for Improved Risk Analysis by Using Machine Learning
    Sulaman, Sardar Muhammad
    Weyns, Kim
    Host, Martin
    PROCEEDINGS 41ST EUROMICRO CONFERENCE ON SOFTWARE ENGINEERING AND ADVANCED APPLICATIONS SEAA 2015, 2015, : 369 - 373
  • [32] Calling communities analysis and identification using machine learning techniques
    Kianmehr, Keivan
    Alhajj, Reda
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (03) : 6218 - 6226
  • [33] Particle identification and analysis in the SciCRT using machine learning tools
    Garcia, R.
    Anzorena, M.
    Valdes-Galicia, J. F.
    Matsubara, Y.
    Sako, T.
    Ortiz, E.
    Hurtado, A.
    Taylor, R.
    Musalem, O.
    Gonzalez, L. X.
    Itow, Y.
    Kawabata, T.
    Munakata, K.
    Kato, C.
    Kihara, W.
    Ko, Y.
    Shibata, S.
    Takamaru, H.
    Oshima, A.
    Koi, T.
    Kojima, H.
    Tsuchiya, H.
    Watanabe, K.
    Kozai, M.
    Nakamura, Y.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2021, 1003 (1003):
  • [34] Identification and characterization of fracture in metals using machine learning based texture recognition algorithms
    Naik, Dayakar L.
    Khan, Ravi
    ENGINEERING FRACTURE MECHANICS, 2019, 219
  • [35] Induction Motor Failure Analysis using Machine Learning and Infrared Thermography
    Resendiz-Ochoa, Emmanuel
    Morales-Hernandez, Luis A.
    Cruz-Albarran, Irving A.
    Alvarez-Junco, Shaila
    2022 IEEE INTERNATIONAL AUTUMN MEETING ON POWER, ELECTRONICS AND COMPUTING (ROPEC), 2022,
  • [36] Fault Analysis and Predictive Maintenance of Induction Motor Using Machine Learning
    Kavana, V
    Neethi, M.
    2018 3RD INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER, AND OPTIMIZATION TECHNIQUES (ICEECCOT - 2018), 2018, : 963 - 966
  • [37] Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques
    Sirunyan, A. M.
    Tumasyan, A.
    Adam, W.
    Ambrogi, F.
    Bergauer, T.
    Brandstetter, J.
    Dragicevic, M.
    Eroe, J.
    Del Valle, A. Escalante
    Flechl, M.
    Fruehwirth, R.
    Jeitler, M.
    Krammer, N.
    Kraetschmer, I
    Liko, D.
    Madlener, T.
    Mikulec, I
    Rad, N.
    Schieck, J.
    Schoefbeck, R.
    Spanring, M.
    Spitzbart, D.
    Waltenberger, W.
    Wulz, C-E
    Zarucki, M.
    Drugakov, V
    Mossolov, V
    Gonzalez, J. Suarez
    Darwish, M. R.
    De Wolf, E. A.
    Di Croce, D.
    Janssen, X.
    Lelek, A.
    Pieters, M.
    Sfar, H. Rejeb
    Van Haevermaet, H.
    Van Mechelen, P.
    Van Putte, S.
    Van Remortel, N.
    Blekman, F.
    Bols, E. S.
    Chhibra, S. S.
    D'Hondt, J.
    De Clercq, J.
    Lontkovskyi, D.
    Lowette, S.
    Marchesini, I
    Moortgat, S.
    Python, Q.
    Skovpen, K.
    JOURNAL OF INSTRUMENTATION, 2020, 15 (06):
  • [38] Landmine Identification From Pulse Induction Metal Detector Data Using Machine Learning
    Simic, Marko
    Ambrus, Davorin
    Bilas, Vedran
    IEEE SENSORS LETTERS, 2023, 7 (09)
  • [39] Using solar-induced chlorophyll fluorescence to predict winter wheat actual evapotranspiration through machine learning and deep learning methods
    Li, Yao
    Liu, Xuanang
    Zhang, Xuegui
    Gu, Xiaobo
    Yu, Lianyu
    Cai, Huanjie
    Peng, Xiongbiao
    AGRICULTURAL WATER MANAGEMENT, 2025, 309
  • [40] Exploring the superiority of solar-induced chlorophyll fluorescence data in predicting wheat yield using machine learning and deep learning methods
    Liu, Yuanyuan
    Wang, Shaoqiang
    Wang, Xiaobo
    Chen, Bin
    Chen, Jinghua
    Wang, Junbang
    Huang, Mei
    Wang, Zhaosheng
    Ma, Li
    Wang, Pengyuan
    Amir, Muhammad
    Zhu, Kai
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 192