Identification of the toxic effects of heavy metals on phytoplankton by the analysis of chlorophyll fluorescence induction curves using machine learning

被引:0
|
作者
Plyusnina, T. Yu. [1 ]
Chervitsov, R. N. [1 ]
Khrushchev, S. S. [1 ]
Kiseleva, D. G. [1 ]
V. Drozdenko, T. [2 ]
Tikhomirova, E. I. [3 ]
Riznichenko, G. Yu. [1 ]
Antal, T. K. [2 ]
机构
[1] Lomonosov Moscow State Univ, 1 Kolmogorova St, Moscow 119991, Russia
[2] Pskov State Univ, 2 Lenina Sq, Pskov 180000, Russia
[3] Yuri Gagarin State Tech Univ Saratov, 77 Politekhn Skaya St, Saratov 410054, Russia
来源
THEORETICAL AND APPLIED ECOLOGY | 2023年 / 02期
关键词
heavy metals; aquatic ecosystems; phytoplankton; environmental monitoring; chlorophyll fluorescence; photosynthesis; machine learning; cluster analysis; CULTIVARS;
D O I
10.25750/1995-4301-2023-2-126-134
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The creation of a network of autonomous stations for bioindication of water bodies state requires the development of methods for analyzing large data arrays. The combination of machine learning methods with traditional statistical methods is used to identify implicit patterns in the dataset for the effect of heavy metals on natural phytoplankton. The array of experimental data consists of 465 fluorescence induction curves measured on phytoplankton samples from 9 water bodies of the Pskov region, and reflecting the dynamics of electron transfer in the photosynthetic apparatus. Each curve is characterized by 14 JIP-test parameters, some of which directly describe the shape of the curve; the others connect the shape of the curve with the energy flows that occur in the photosynthetic apparatus under illumination. Cluster analysis based on a set of JIP-test parameters was used to distinguish photosynthetic activity first among phytoplankton samples in control and then under long-term exposure to cadmium and chromium salts. In the control samples, two groups were identified that differ in the photosynthetic activity of phytoplankton. It is assumed that the lower photosynthetic activity of phytoplankton samples is associated with anthropogenic pressure on the water bodies. It was shown that the samples with initially low photosynthetic activity responded to the toxic effect of heavy metals at later periods of incubation com-pared to more active samples. The proposed approach can be easily scaled to analyze large arrays of experimental data that makes it a promising tool for the early detection of toxic pollution of natural waters.
引用
收藏
页码:126 / 134
页数:9
相关论文
共 50 条
  • [1] Heavy metal toxicity detection in phytoplankton by using neural network analysis of chlorophyll fluorescence induction
    Khruschev, S. S.
    Drozdenko, T., V
    Plyusnina, T. Yu
    Timofeev, I., V
    Todorenko, D. A.
    Tikhomirova, E., I
    Antal, T. K.
    THEORETICAL AND APPLIED ECOLOGY, 2021, (02): : 134 - 141
  • [2] Analysis of chlorophyll fluorescence induction curves (OJIP transients) of phytoplankton under conditions of high photosynthetic activity
    Antal, T. K.
    Volgusheva, A. A.
    Drozdenko, T. V.
    Konyukhov, I. V.
    Khruschev, S. S.
    Chervitsov, R. N.
    Plyusnina, T. Yu.
    Riznichenko, G. Yu.
    Rubin, A. B.
    JOURNAL OF APPLIED PHYCOLOGY, 2025,
  • [3] Effects of heavy metals on the fast chlorophyll fluorescence induction kinetics of photosystem II: a comparative study
    Ciscato, M
    Vangronsveld, J
    Valcke, R
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION C-A JOURNAL OF BIOSCIENCES, 1999, 54 (9-10): : 735 - 739
  • [4] Automatic identification of crop and weed species with chlorophyll fluorescence induction curves
    Tyystjarvi, Esa
    Norremark, Michael
    Mattila, Heta
    Keranen, Mika
    Hakala-Yatkin, Marja
    Ottosen, Carl-Otto
    Rosenqvist, Eva
    PRECISION AGRICULTURE, 2011, 12 (04) : 546 - 563
  • [5] Automatic identification of crop and weed species with chlorophyll fluorescence induction curves
    Esa Tyystjärvi
    Michael Nørremark
    Heta Mattila
    Mika Keränen
    Marja Hakala-Yatkin
    Carl-Otto Ottosen
    Eva Rosenqvist
    Precision Agriculture, 2011, 12 : 546 - 563
  • [6] Comparison of chlorophyll fluorescence curves and texture analysis for automatic plant identification
    Heta Mattila
    Pertti Valli
    Tapio Pahikkala
    Jukka Teuhola
    Olli S. Nevalainen
    Esa Tyystjärvi
    Precision Agriculture, 2013, 14 : 621 - 636
  • [7] Comparison of chlorophyll fluorescence curves and texture analysis for automatic plant identification
    Mattila, Heta
    Valli, Pertti
    Pahikkala, Tapio
    Teuhola, Jukka
    Nevalainen, Olli S.
    Tyystjarvi, Esa
    PRECISION AGRICULTURE, 2013, 14 (06) : 621 - 636
  • [8] Prediction of heavy metals adsorption by hydrochars and identification of critical factors using machine learning algorithms
    Zhao, Fangzhou
    Tang, Lingyi
    Jiang, Hanfeng
    Mao, Yajun
    Song, Wenjing
    Chen, Haoming
    BIORESOURCE TECHNOLOGY, 2023, 383
  • [9] USING ARTIFICIAL NEURAL NETWORKS FOR PLANT TAXONOMIC DETERMINATION BASED ON CHLOROPHYLL FLUORESCENCE INDUCTION CURVES
    Kirova, Mariya
    Ceppi, Georgina
    Chernev, Petko
    Goltsev, Vasilij
    Strasser, Reto
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2009, 23 : 941 - 945
  • [10] Quantitative source apportionment and driver identification of soil heavy metals using advanced machine learning techniques
    Zheng, Jiatong
    Wang, Peng
    Shi, Hangyuan
    Zhuang, Changwei
    Deng, Yirong
    Yang, Xiaojun
    Huang, Fei
    Xiao, Rongbo
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 873