Ricci Soliton of CR-Warped Product Manifolds and Their Classifications

被引:28
|
作者
Li, Yanlin [1 ]
Srivastava, Sachin Kumar [2 ]
Mofarreh, Fatemah [3 ]
Kumar, Anuj [2 ]
Ali, Akram [4 ]
机构
[1] Hangzhou Normal Univ, Sch Math, Hangzhou 311121, Peoples R China
[2] Cent Univ Himachal Pradesh, Dept Math, Dharamshala 176215, Himachal Prades, India
[3] Princess Nourah Bint Abdulrahman Univ, Fac Sci, Math Sci Dept, Riyadh 11546, Saudi Arabia
[4] King Khalid Univ, Coll Sci, Dept Math, Abha 61413, Saudi Arabia
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 05期
基金
中国国家自然科学基金;
关键词
Ricci solitons; warped products; geometric inequalities; complex space from; Dirichlet energy; SUBMANIFOLDS; SURFACES; GEOMETRY; CURVES;
D O I
10.3390/sym15050976
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, we derived an equality for CR-warped product in a complex space form which forms the relationship between the gradient and Laplacian of the warping function and second fundamental form. We derived the necessary conditions of a CR-warped product submanifolds in Ka center dot hler manifold to be an Einstein manifold in the impact of gradient Ricci soliton. Some classification of CR-warped product submanifolds in the Ka center dot hler manifold by using the Euler-Lagrange equation, Dirichlet energy and Hamiltonian is given. We also derive some characterizations of Einstein warped product manifolds under the impact of Ricci Curvature and Divergence of Hessian tensor.
引用
收藏
页数:14
相关论文
共 50 条