A transfer learning-based deep convolutional neural network approach for induction machine multiple faults detection

被引:2
|
作者
Kumar, Prashant [1 ]
Hati, Ananda Shankar [2 ,3 ]
Kumar, Prince [2 ]
机构
[1] Dongguk Univ, Dept Mech Robot & Energy Engn, Seoul, South Korea
[2] Indian Inst Technol, Indian Sch Mines, Dept Elect Engn, Dhanbad, Jharkhand, India
[3] Indian Inst Technol, Indian Sch Mines, Dept Elect Engn, Dhanbad 826004, Jharkhand, India
关键词
bearing fault; broken rotor bar; convolutional neural network; deep learning; fault diagnosis; squirrel cage induction motors; transfer learning; SUPPORT VECTOR MACHINE; DIAGNOSIS; FUSION; MOTORS;
D O I
10.1002/acs.3643
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The condition monitoring of squirrel cage induction motors (SCIMs) is vital for uninterrupted production and minimum downtime. Early fault detection can boost output with minimum effort. This article combines the application of transfer learning and convolution neural network (TL-CNN) for developing an efficient model for bearing and rotor broken bars damage identification in SCIMs. A simple technique for the 1-D current signal-to-image conversion is also proposed to provide input to the proposed deep learning-based TL-CNN technique. The proposed approach embodies the advantages of TL and CNN for effective fault identification in SCIMs. The developed technique has classified faults efficiently with an average accuracy of 99.40%. The complete analysis and data collection have been done on the experimental set-up with a 5 kW SCIM and LabVIEW-based data acquisition system. The propounded fault detection model has been created in python with the help of packages like Keras and TensorFlow.
引用
收藏
页码:2380 / 2393
页数:14
相关论文
共 50 条
  • [1] Amalgamation of Transfer Learning and Deep Convolutional Neural Network for Multiple Fault Detection in SCIM
    Kumar, Prashant
    Hati, Ananda Shankar
    Padmanaban, Sanjeevikumar
    Leonowicz, Zbigniew
    Chakrabarti, Prasun
    2020 20TH IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2020 4TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE), 2020,
  • [2] Transfer learning-based deep CNN model for multiple faults detection in SCIM
    Kumar, Prashant
    Hati, Ananda Shankar
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (22) : 15851 - 15862
  • [3] Transfer learning-based deep CNN model for multiple faults detection in SCIM
    Prashant Kumar
    Ananda Shankar Hati
    Neural Computing and Applications, 2021, 33 : 15851 - 15862
  • [4] A Transfer Learning-Based Deep Convolutional Neural Network for Detection of Fusarium Wilt in Banana Crops
    Yan, Kevin
    Shisher, Md Kamran Chowdhury
    Sun, Yin
    AGRIENGINEERING, 2023, 5 (04): : 2381 - 2394
  • [5] Deep Convolutional Neural Network (Falcon) and transfer learning-based approach to detect malarial parasite
    Banerjee, Tathagat
    Jain, Aditya
    Sethuraman, Sibi Chakkaravarthy
    Satapathy, Suresh Chandra
    Karthikeyan, S.
    Jubilson, Ajith
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (10) : 13237 - 13251
  • [6] Intelligent machine fault diagnosis based on deep transfer convolutional neural network and extreme learning machine
    Cen, Jian
    Chen, Zhihao
    Wu, Yinbo
    Yang, Zhuohong
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2023, 237 (09) : 2201 - 2212
  • [7] Transfer Learning-Based Multi-Scale Denoising Convolutional Neural Network for Prostate Cancer Detection
    Chui, Kwok Tai
    Gupta, Brij B.
    Chi, Hao Ran
    Arya, Varsha
    Alhalabi, Wadee
    Ruiz, Miguel Torres
    Shen, Chien-Wen
    CANCERS, 2022, 14 (15)
  • [8] Deep Learning-Based Interference Fringes Detection Using Convolutional Neural Network
    Li, Haowei
    Zhang, Chunxi
    Song, Ningfang
    Li, Huipeng
    IEEE PHOTONICS JOURNAL, 2019, 11 (04):
  • [9] Transfer learning approach in deep neural networks for uterine fibroid detection
    Sundar, Sumod
    Sumathy, S.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2022, 25 (01) : 52 - 63
  • [10] Crop pest classification based on deep convolutional neural network and transfer learning
    Thenmozhi, K.
    Reddy, U. Srinivasulu
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2019, 164