An interpretable hybrid predictive model of COVID-19 cases using autoregressive model and LSTM

被引:10
|
作者
Zhang, Yangyi [1 ]
Tang, Sui [1 ]
Yu, Guo [2 ]
机构
[1] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USA
关键词
ARIMA; XGBOOST;
D O I
10.1038/s41598-023-33685-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Coronavirus Disease 2019 (COVID-19) has had a profound impact on global health and economy, making it crucial to build accurate and interpretable data-driven predictive models for COVID-19 cases to improve public policy making. The extremely large scale of the pandemic and the intrinsically changing transmission characteristics pose a great challenge for effectively predicting COVID-19 cases. To address this challenge, we propose a novel hybrid model in which the interpretability of the Autoregressive model (AR) and the predictive power of the long short-term memory neural networks (LSTM) join forces. The proposed hybrid model is formalized as a neural network with an architecture that connects two composing model blocks, of which the relative contribution is decided data-adaptively in the training procedure. We demonstrate the favorable performance of the hybrid model over its two single composing models as well as other popular predictive models through comprehensive numerical studies on two data sources under multiple evaluation metrics. Specifically, in county-level data of 8 California counties, our hybrid model achieves 4.173% MAPE, outperforming the composing AR (5.629%) and LSTM (4.934%) alone on average. In country-level datasets, our hybrid model outperforms the widely-used predictive models such as AR, LSTM, Support Vector Machines, Gradient Boosting, and Random Forest, in predicting the COVID-19 cases in Japan, Canada, Brazil, Argentina, Singapore, Italy, and the United Kingdom. In addition to the predictive performance, we illustrate the interpretability of our proposed hybrid model using the estimated AR component, which is a key feature that is not shared by most black-box predictive models for COVID-19 cases. Our study provides a new and promising direction for building effective and interpretable data-driven models for COVID-19 cases, which could have significant implications for public health policy making and control of the current COVID-19 and potential future pandemics.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Transfer Function Model for COVID-19 Deaths in USA Using Case Counts as Input Series
    Fahmida Akter Shahela
    Nizam Uddin
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 461 - 475
  • [42] Time series analysis of COVID-19 cases
    Bhangu, Kamalpreet Singh
    Sandhu, Jasminder
    Sapra, Luxmi
    WORLD JOURNAL OF ENGINEERING, 2022, 19 (01) : 40 - 48
  • [43] LSTM-based Deep Learning Model for Stock Prediction and Predictive Optimization Model
    Rather, Akhter Mohiuddin
    EURO JOURNAL ON DECISION PROCESSES, 2021, 9
  • [44] Comparative performance of hybrid model based on discrete wavelet transform and ARIMA models in prediction incidence of COVID-19
    Holakouie-Naieni, Kourosh
    Sepandi, Mojtaba
    Eshrati, Babak
    Nematollahi, Shahrzad
    Alimohamadi, Yousef
    HELIYON, 2024, 10 (13)
  • [45] Forecasting daily confirmed COVID-19 cases in Malaysia using ARIMA models
    Singh, Sarbhan
    Sundram, Bala Murali
    Rajendran, Kamesh
    Law, Kian Boon
    Aris, Tahir
    Ibrahim, Hishamshah
    Dass, Sarat Chandra
    Gill, Balvinder Singh
    JOURNAL OF INFECTION IN DEVELOPING COUNTRIES, 2020, 14 (09): : 971 - +
  • [46] Forecasting daily confirmed COVID-19 cases in Algeria using ARIMA models
    Abdelaziz, Messis
    Ahmed, Adjebli
    Riad, Ayeche
    Abderrezak, Ghidouche
    Djida, Ait-Ali
    EASTERN MEDITERRANEAN HEALTH JOURNAL, 2023, 29 (07) : 515 - 519
  • [47] Forecasting COVID-19 Confirmed Cases Using Empirical Data Analysis in Korea
    Lee, Da Hye
    Kim, Youn Su
    Koh, Young Youp
    Song, Kwang Yoon
    Chang, In Hong
    HEALTHCARE, 2021, 9 (03)
  • [48] COVID-19 Lifecycle: Predictive Modelling of States in India
    Behl, Ramesh
    Mishra, Manit
    GLOBAL BUSINESS REVIEW, 2020, 21 (04) : 883 - 891
  • [49] An ARIMA-LSTM hybrid model for stock market prediction using live data
    Kulshreshtha S.
    Vijayalakshmi A.
    Journal of Engineering Science and Technology Review, 2020, 13 (04): : 117 - 123
  • [50] A hybrid of nonlinear autoregressive model with exogenous input and autoregressive moving average model for long-term machine state forecasting
    Pham, Hong Thom
    Tran, Van Tung
    Yang, Bo-Suk
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (04) : 3310 - 3317