GENERIC KAM HAMILTONIANS ARE NOT QUANTUM ERGODIC

被引:0
|
作者
Gomes, Sean [1 ]
机构
[1] Northwestern Univ, Dept Math, Chicago, IL 60611 USA
来源
ANALYSIS & PDE | 2023年 / 16卷 / 01期
关键词
quantum ergodicity; KAM Hamiltonians; EFFECTIVE STABILITY; INVARIANT TORI; QUASIMODES; THEOREM;
D O I
10.2140/apde.2023.16.119
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that under generic conditions, the quantisation of a 1-parameter family of KAM perturbations P(x, xi; t) of a completely integrable and Kolmogorov nondegenerate Gevrey smooth Hamiltonian is not quantum ergodic for a full-measure subset of parameter values t is an element of (0, delta).
引用
收藏
页码:119 / 171
页数:55
相关论文
共 12 条
  • [1] POSITIVE MEASURE OF KAM TORI FOR FINITELY DIFFERENTIABLE HAMILTONIANS
    Bounemoura, Abed
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2020, 7 : 1113 - 1132
  • [3] Mixing Properties of Stochastic Quantum Hamiltonians
    Onorati, E.
    Buerschaper, O.
    Kliesch, M.
    Brown, W.
    Werner, A. H.
    Eisert, J.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 355 (03) : 905 - 947
  • [4] Ergodic and mixing quantum channels in finite dimensions
    Burgarth, D.
    Chiribella, G.
    Giovannetti, V.
    Perinotti, P.
    Yuasa, K.
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [5] Quantum chaos and entanglement in ergodic and nonergodic systems
    Piga, Angelo
    Lewenstein, Maciej
    Quach, James Q.
    PHYSICAL REVIEW E, 2019, 99 (03)
  • [6] KAM Tori for the System of Coupled Quantum Harmonic Oscillators with Reversible Perturbations
    Lou, Zhaowei
    Wu, Jian
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024, 36 (03) : 2429 - 2476
  • [7] Optimal observability of the multi-dimensional wave and Schrodinger equations in quantum ergodic domains
    Privat, Yannick
    Trelat, Emmanuel
    Zuazua, Enrique
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2016, 18 (05) : 1043 - 1111
  • [8] Towards a definition of the quantum ergodic hierarchy: Ergodicity and mixing
    Castagnino, Mario
    Lombardi, Olimpia
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (04) : 247 - 267
  • [9] A GENERIC DISTAL TOWER OF ARBITRARY COUNTABLE HEIGHT OVER AN ARBITRARY INFINITE ERGODIC SYSTEM
    Glasner, E. L., I
    Weiss, Benjamin
    JOURNAL OF MODERN DYNAMICS, 2021, 17 : 435 - 463
  • [10] Ergodic and mixing quantum channels: From two-qubit to many-body quantum systems
    Aravinda, S.
    Banerjee, Shilpak
    Modak, Ranjan
    PHYSICAL REVIEW A, 2024, 110 (04)