Surface Li2CO3 Mediated Phosphorization Enables Compatible Interfaces of Composite Polymer Electrolyte for Solid-State Lithium Batteries

被引:39
|
作者
Yi, Xuerui [1 ,2 ,3 ]
Guo, Yong [1 ,2 ,3 ]
Chi, Sijia [1 ,2 ,3 ]
Pan, Siyuan [1 ,2 ,3 ]
Geng, Chuannan [1 ,2 ,3 ]
Li, Mengyao [4 ]
Li, Zhenshen [1 ,2 ,3 ]
Lv, Wei [4 ]
Wu, Shichao [1 ,2 ,3 ]
Yang, Quan-Hong [1 ,2 ,3 ,5 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Tianjin Key Lab Adv Carbon & Electrochem Energy St, Nanoyang Grp,Natl Ind Educ Integrat Platform Ener, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
[3] Haihe Lab Sustainable Chem Transformat, Tianjin 300192, Peoples R China
[4] Tsinghua Univ, Shenzhen Geim Graphene Ctr Engn Lab Functionalized, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
[5] Tianjin Univ, Joint Sch Natl Univ Singapore & Tianjin Univ, Int Campus, Fuzhou 350207, Peoples R China
基金
中国国家自然科学基金;
关键词
composite polymer electrolytes; dehydrofluorination; interfaces; phosphorization; poly(vinylidene fluoride-co-hexafluoropropylene); LAYERS;
D O I
10.1002/adfm.202303574
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Composite polymer electrolytes (CPEs) are subject to interface incompatibilities due to the space charge layer of ceramic and polymer phases. The intensive dehydrofluorination of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) incorporating Li7La3Zr2O12 (LLZO) significantly compromises electro-chemo-mechanical properties and compatibilities with electrodes. Herein, this study addresses the challenges by precisely phosphatizing LLZO surfaces through a surface Li2CO3 mediated chemical reaction. The designed neutral chemical environment of LLZO surfaces ensures high air stability and effective suppression of PVDF-HFP dehydrofluorination. This greatly facilitates the uniform distribution of ceramic and polymer phases, and fast interfacial Li+ exchange, establishing high-throughput ion percolation pathways and distinctly enhancing ionic conductivity and transference number. Moreover, the dramatically reduced formation of dehydrofluorination products and an in situ formed interphase layer between phosphatized surface and a Li metal anode stabilize the Li/CPE and cathode/CPE interfaces, which provide a symmetric Li/Li cell and solid-state Li/LiFePO4 and Li/LiNi0.8Co0.1Mn0.1O2 cells an exceptional cycling performance at room temperature. This study emphasizes the vital importance of achieving electro-chemo-mechanical compatibilities for CPEs and provides a new waste to wealth route.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] In situ formation of polymer-inorganic solid-electrolyte interphase for stable polymeric solid-state lithium-metal batteries
    Deng, Tao
    Cao, Longsheng
    He, Xinzi
    Li, Ai-Min
    Li, Dan
    Xu, Jijian
    Liu, Sufu
    Bai, Panxing
    Jin, Ting
    Ma, Lin
    Schroeder, Marshall A.
    Fan, Xiulin
    Wang, Chunsheng
    CHEM, 2021, 7 (11): : 3052 - 3068
  • [32] Ultrathin composite polymer electrolyte with ordered ion pathways for all-solid-state lithium-metal batteries
    Wang, Haoran
    Cheng, Guangzeng
    Sun, Hao
    Wu, Jingyi
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 683 : 14 - 24
  • [33] Preparation and performances of poly (ethylene oxide)-Li6PS5Cl composite polymer electrolyte for all-solid-state lithium batteries
    Zou, Changfei
    Yang, Li
    Luo, Kaili
    Liu, Lei
    Tao, Xiyuan
    Yi, Lingguang
    Liu, Xianhu
    Luo, Zhigao
    Wang, Xianyou
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2021, 900
  • [34] 3D flame-retardant skeleton reinforced polymer electrolyte for solid-state dendrite-free lithium metal batteries
    Zheng, Xiaojiao
    Wu, Jiawei
    Chen, Jing
    Wang, Xiaodong
    Yang, Zhenglong
    JOURNAL OF ENERGY CHEMISTRY, 2022, 71 : 174 - 181
  • [35] Free-standing sulfide/polymer composite solid electrolyte membranes with high conductance for all-solid-state lithium batteries
    Zhang, Yibo
    Chen, Rujun
    Wang, Shuo
    Liu, Ting
    Xu, Bingqing
    Zhang, Xue
    Wang, Xinzhi
    Shen, Yang
    Lin, Yuan-Hua
    Li, Ming
    Fan, Li-Zhen
    Li, Liangliang
    Nan, Ce-Wen
    ENERGY STORAGE MATERIALS, 2020, 25 : 145 - 153
  • [36] Mechanisms of the Accelerated Li+ Conduction in MOF-Based Solid-State Polymer Electrolytes for All-Solid-State Lithium Metal Batteries
    Duan, Song
    Qian, Lanting
    Zheng, Yun
    Zhu, Yanfei
    Liu, Xiang
    Dong, Li
    Yan, Wei
    Zhang, Jiujun
    ADVANCED MATERIALS, 2024, 36 (32)
  • [37] Synergistic Approach toward Developing Highly Compatible Garnet-Liquid Electrolyte Interphase in Hybrid Solid-State Lithium-Metal Batteries
    Sarkar, Subhajit
    Chen, Bowen
    Zhou, Chengtian
    Shirazi, Shahram Nouri
    Langer, Frederieke
    Schwenzel, Julian
    Thangadurai, Venkataraman
    ADVANCED ENERGY MATERIALS, 2023, 13 (08)
  • [38] In-Situ Intermolecular Interaction in Composite Polymer Electrolyte for Ultralong Life Quasi-Solid-State Lithium Metal Batteries
    He, Kangqiang
    Cheng, Samson Ho-Sum
    Hu, Jieying
    Zhang, Yangqian
    Yang, Huiwen
    Liu, Yingying
    Liao, Wenchao
    Chen, Dazhu
    Liao, Chengzhu
    Cheng, Xin
    Lu, Zhouguang
    He, Jun
    Tang, Jiaoning
    Li, Robert K. Y.
    Liu, Chen
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (21) : 12116 - 12123
  • [39] Elevated-Temperature 3D Printing of Hybrid Solid-State Electrolyte for Li-Ion Batteries
    Cheng, Meng
    Jiang, Yizhou
    Yao, Wentao
    Yuan, Yifei
    Deivanayagam, Ramasubramonian
    Foroozan, Tara
    Huang, Zhennan
    Song, Boao
    Rojaee, Ramin
    Shokuhfar, Tolou
    Pan, Yayue
    Lu, Jun
    Shahbazian-Yassar, Reza
    ADVANCED MATERIALS, 2018, 30 (39)
  • [40] A robust 3D nanostructured composite polymer electrolyte with novel dual-ion channels toward solid-state sodium metal batteries
    Cui, Yunlong
    Zhang, Pengyu
    Tian, Yuan
    Wang, Cheng
    Wang, Su
    Zhang, Yan
    Shi, Xixi
    Ma, Yue
    Song, Dawei
    Zhang, Hongzhou
    Liu, Kai
    Zhang, Na
    Zhang, Lianqi
    CHEMICAL ENGINEERING JOURNAL, 2024, 498