Surface Li2CO3 Mediated Phosphorization Enables Compatible Interfaces of Composite Polymer Electrolyte for Solid-State Lithium Batteries

被引:39
|
作者
Yi, Xuerui [1 ,2 ,3 ]
Guo, Yong [1 ,2 ,3 ]
Chi, Sijia [1 ,2 ,3 ]
Pan, Siyuan [1 ,2 ,3 ]
Geng, Chuannan [1 ,2 ,3 ]
Li, Mengyao [4 ]
Li, Zhenshen [1 ,2 ,3 ]
Lv, Wei [4 ]
Wu, Shichao [1 ,2 ,3 ]
Yang, Quan-Hong [1 ,2 ,3 ,5 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Tianjin Key Lab Adv Carbon & Electrochem Energy St, Nanoyang Grp,Natl Ind Educ Integrat Platform Ener, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
[3] Haihe Lab Sustainable Chem Transformat, Tianjin 300192, Peoples R China
[4] Tsinghua Univ, Shenzhen Geim Graphene Ctr Engn Lab Functionalized, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
[5] Tianjin Univ, Joint Sch Natl Univ Singapore & Tianjin Univ, Int Campus, Fuzhou 350207, Peoples R China
基金
中国国家自然科学基金;
关键词
composite polymer electrolytes; dehydrofluorination; interfaces; phosphorization; poly(vinylidene fluoride-co-hexafluoropropylene); LAYERS;
D O I
10.1002/adfm.202303574
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Composite polymer electrolytes (CPEs) are subject to interface incompatibilities due to the space charge layer of ceramic and polymer phases. The intensive dehydrofluorination of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) incorporating Li7La3Zr2O12 (LLZO) significantly compromises electro-chemo-mechanical properties and compatibilities with electrodes. Herein, this study addresses the challenges by precisely phosphatizing LLZO surfaces through a surface Li2CO3 mediated chemical reaction. The designed neutral chemical environment of LLZO surfaces ensures high air stability and effective suppression of PVDF-HFP dehydrofluorination. This greatly facilitates the uniform distribution of ceramic and polymer phases, and fast interfacial Li+ exchange, establishing high-throughput ion percolation pathways and distinctly enhancing ionic conductivity and transference number. Moreover, the dramatically reduced formation of dehydrofluorination products and an in situ formed interphase layer between phosphatized surface and a Li metal anode stabilize the Li/CPE and cathode/CPE interfaces, which provide a symmetric Li/Li cell and solid-state Li/LiFePO4 and Li/LiNi0.8Co0.1Mn0.1O2 cells an exceptional cycling performance at room temperature. This study emphasizes the vital importance of achieving electro-chemo-mechanical compatibilities for CPEs and provides a new waste to wealth route.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Mof-derived ionic conductor enhancing the performance of polymer electrolyte for solid-state lithium batteries
    Jiang, Han
    Du, Yongqian
    Zhao, Longyan
    Liu, Xuanyu
    Kong, Jiangrong
    Liu, Peng
    Zhou, Tao
    CHEMICAL ENGINEERING JOURNAL, 2024, 487
  • [22] Composite polymer electrolyte with three-dimensional ion transport channels constructed by NaCl template for solid-state lithium metal batteries
    Wang, Guoxu
    Liu, Hong
    Liang, Yuhao
    Wang, Chao
    Fan, Li-Zhen
    ENERGY STORAGE MATERIALS, 2022, 45 : 1212 - 1219
  • [23] Stabilizing the Bilateral Interfaces by a PVDF-Based Double-Layer Solid Composite Electrolyte with a Relieved Dehydrofluorination Effect for Solid-State Lithium Metal Batteries
    Yuan, Yan
    Liu, Xuyi
    Dong, Xinyi
    Kong, Yaxin
    Liu, Huan
    Ma, Yitian
    Lu, Hai
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (43) : 59547 - 59555
  • [24] Constructing Li-Rich Artificial SEI Layer in Alloy-Polymer Composite Electrolyte to Achieve High Ionic Conductivity for All Solid-State Lithium Metal Batteries
    Liu, Yuxuan
    Hu, Renzong
    Zhang, Dechao
    Liu, Jiangwen
    Liu, Fang
    Cui, Jie
    Lin, Zuopeng
    Wu, Jinsong
    Zhu, Min
    ADVANCED MATERIALS, 2021, 33 (11)
  • [25] 3D Porous Garnet/Gel Polymer Hybrid Electrolyte for Safe Solid-State Li-O2 Batteries with Long Lifetimes
    Zhao, Changtai
    Sun, Qian
    Luo, Jing
    Liang, Jianneng
    Liu, Yulong
    Zhang, Lei
    Wang, Jiwei
    Deng, Sixu
    Lin, Xiaoting
    Yang, Xiaofei
    Huang, Huan
    Zhao, Shangqian
    Zhang, Li
    Lu, Shigang
    Sun, Xueliang
    CHEMISTRY OF MATERIALS, 2020, 32 (23) : 10113 - 10119
  • [26] Thin Yet Strong Composite Polymer Electrolyte Reinforced by Nanofibrous Membrane for Flexible Dendrite-Free Solid-State Lithium Metal Batteries
    Yu, Genxi
    Pan, Long
    Zhang, Heng
    Wang, Yaping
    Li, Kai
    Chen, Daming
    Chen, Jian
    Sun, Zheng Ming
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2022, 3 (06):
  • [27] Poor Stability of Li2CO3 in the Solid Electrolyte Interphase of a Lithium-Metal Anode Revealed by Cryo-Electron Microscopy
    Han, Bing
    Zhang, Zhen
    Zou, Yucheng
    Xu, Kang
    Xu, Guiyin
    Wang, Hong
    Meng, Hong
    Deng, Yonghong
    Li, Ju
    Gu, Meng
    ADVANCED MATERIALS, 2021, 33 (22)
  • [28] Interfaces in solid-state sodium-ion batteries: NaCoO2 thin films on solid electrolyte substrates
    Guhl, Conrad
    Kehne, Philipp
    Ma, Qianli
    Tietz, Frank
    Komissinskiy, Philipp
    Jaegermann, Wolfram
    Hausbrand, Rene
    ELECTROCHIMICA ACTA, 2018, 268 : 226 - 233
  • [29] Review on composite polymer electrolyte using PVDF-HFP for solid-state lithium-ion battery
    Halder, Bhargabi
    Mohamed, Mohamed Gamal
    Kuo, Shiao-Wei
    Elumalai, Perumal
    MATERIALS TODAY CHEMISTRY, 2024, 36
  • [30] Polymer/ceramic interfacial layer enables stable cycling of all-solid-state Li-metal batteries with sulfide electrolyte
    Xiao, Kexin
    Ren, Pengfei
    Wang, Xiaofen
    Chen, Hong
    Zhou, Qiongyu
    MATERIALS LETTERS, 2024, 362