Surface Li2CO3 Mediated Phosphorization Enables Compatible Interfaces of Composite Polymer Electrolyte for Solid-State Lithium Batteries

被引:61
作者
Yi, Xuerui [1 ,2 ,3 ]
Guo, Yong [1 ,2 ,3 ]
Chi, Sijia [1 ,2 ,3 ]
Pan, Siyuan [1 ,2 ,3 ]
Geng, Chuannan [1 ,2 ,3 ]
Li, Mengyao [4 ]
Li, Zhenshen [1 ,2 ,3 ]
Lv, Wei [4 ]
Wu, Shichao [1 ,2 ,3 ]
Yang, Quan-Hong [1 ,2 ,3 ,5 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Tianjin Key Lab Adv Carbon & Electrochem Energy St, Nanoyang Grp,Natl Ind Educ Integrat Platform Ener, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
[3] Haihe Lab Sustainable Chem Transformat, Tianjin 300192, Peoples R China
[4] Tsinghua Univ, Shenzhen Geim Graphene Ctr Engn Lab Functionalized, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
[5] Tianjin Univ, Joint Sch Natl Univ Singapore & Tianjin Univ, Int Campus, Fuzhou 350207, Peoples R China
基金
中国国家自然科学基金;
关键词
composite polymer electrolytes; dehydrofluorination; interfaces; phosphorization; poly(vinylidene fluoride-co-hexafluoropropylene); LAYERS;
D O I
10.1002/adfm.202303574
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Composite polymer electrolytes (CPEs) are subject to interface incompatibilities due to the space charge layer of ceramic and polymer phases. The intensive dehydrofluorination of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) incorporating Li7La3Zr2O12 (LLZO) significantly compromises electro-chemo-mechanical properties and compatibilities with electrodes. Herein, this study addresses the challenges by precisely phosphatizing LLZO surfaces through a surface Li2CO3 mediated chemical reaction. The designed neutral chemical environment of LLZO surfaces ensures high air stability and effective suppression of PVDF-HFP dehydrofluorination. This greatly facilitates the uniform distribution of ceramic and polymer phases, and fast interfacial Li+ exchange, establishing high-throughput ion percolation pathways and distinctly enhancing ionic conductivity and transference number. Moreover, the dramatically reduced formation of dehydrofluorination products and an in situ formed interphase layer between phosphatized surface and a Li metal anode stabilize the Li/CPE and cathode/CPE interfaces, which provide a symmetric Li/Li cell and solid-state Li/LiFePO4 and Li/LiNi0.8Co0.1Mn0.1O2 cells an exceptional cycling performance at room temperature. This study emphasizes the vital importance of achieving electro-chemo-mechanical compatibilities for CPEs and provides a new waste to wealth route.
引用
收藏
页数:8
相关论文
共 45 条
[1]   Processing thin but robust electrolytes for solid-state batteries [J].
Balaish, Moran ;
Gonzalez-Rosillo, Juan Carlos ;
Kim, Kun Joong ;
Zhu, Yuntong ;
Hood, Zachary D. ;
Rupp, Jennifer L. M. .
NATURE ENERGY, 2021, 6 (03) :227-239
[2]   Inhibiting Formation and Reduction of Li2CO3 to LiCx at Grain Boundaries in Garnet Electrolytes to Prevent Li Penetration [J].
Biao, Jie ;
Han, Bing ;
Cao, Yidan ;
Li, Qidong ;
Zhong, Guiming ;
Ma, Jiabin ;
Chen, Likun ;
Yang, Ke ;
Mi, Jinshuo ;
Deng, Yonghong ;
Liu, Ming ;
Lv, Wei ;
Kang, Feiyu ;
He, Yan-Bing .
ADVANCED MATERIALS, 2023, 35 (12)
[3]   Garnet Electrolytes for Solid State Batteries: Visualization of Moisture-Induced Chemical Degradation and Revealing Its Impact on the Li-Ion Dynamics [J].
Brugge, Rowena H. ;
Hekselman, A. K. Ola ;
Cavallaro, Andrea ;
Pesci, Federico M. ;
Chater, Richard J. ;
Kilner, John A. ;
Aguadero, Ainara .
CHEMISTRY OF MATERIALS, 2018, 30 (11) :3704-3713
[4]   Self-Amplified Competitive Coordination of MnO2-Doped CeO2 Nanozyme for Synchronously Activated Combination Therapy [J].
Chen, Ying ;
Liu, Yong ;
Guo, Chunmei ;
Yin, Chao ;
Xie, Chen ;
Fan, Quli .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (02)
[5]   Interrelationships among Grain Size, Surface Composition, Air Stability, and Interfacial Resistance of Al-Substituted Li7La3Zr2O12 Solid Electrolytes [J].
Cheng, Lei ;
Wu, Cheng Hao ;
Jarry, Angelique ;
Chen, Wei ;
Ye, Yifan ;
Zhu, Junfa ;
Kostecki, Robert ;
Persson, Kristin ;
Guo, Jinghua ;
Salmeron, Miguel ;
Chen, Guoying ;
Doeff, Marca .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (32) :17649-17655
[6]   Revealing the Impact of Space-Charge Layers on the Li-Ion Transport in All-Solid-State Batteries [J].
Cheng, Zhu ;
Liu, Ming ;
Ganapathy, Swapna ;
Li, Chao ;
Li, Zhaolong ;
Zhang, Xiaoyu ;
He, Ping ;
Zhou, Haoshen ;
Wagemaker, Marnix .
JOULE, 2020, 4 (06) :1311-1323
[7]   Molecular Self-Assembled Ether-Based Polyrotaxane Solid Electrolyte for Lithium Metal Batteries [J].
Ding, Peipei ;
Wu, Lingqiao ;
Lin, Zhiyuan ;
Lou, Chenjie ;
Tang, Mingxue ;
Guo, Xianwei ;
Guo, Hongxia ;
Wang, Yongtao ;
Yu, Haijun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (03) :1548-1556
[8]   Polymorphism of garnet solid electrolytes and its implications for grain-level chemo-mechanics [J].
Dixit, Marm B. ;
Vishugopi, Bairav S. ;
Zaman, Wahid ;
Kenesei, Peter ;
Park, Jun-Sang ;
Almer, Jonathan ;
Mukherjee, Partha P. ;
Hatzell, Kelsey B. .
NATURE MATERIALS, 2022, 21 (11) :1298-+
[9]   Smart Construction of an Intimate Lithium | Garnet Interface for All-Solid-State Batteries by Tuning the Tension of Molten Lithium [J].
Du, Mingjie ;
Sun, Yang ;
Liu, Bo ;
Chen, Bingbing ;
Liao, Kaiming ;
Ran, Ran ;
Cai, Rui ;
Zhou, Wei ;
Shao, Zongping .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (31)
[10]   Recent advances in the interface engineering of solid-state Li-ion batteries with artificial buffer layers: challenges, materials, construction, and characterization [J].
Du, Mingjie ;
Liao, Kaiming ;
Lu, Qian ;
Shao, Zongping .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (06) :1780-1804