Isothermal Heteroepitaxy of Ge1-XSnX Structures for Electronic and Photonic Applications

被引:8
作者
Concepcion, Omar [1 ]
Sogaard, Nicolaj B. [2 ]
Bae, Jin-Hee [1 ]
Yamamoto, Yuji [3 ]
Tiedemann, Andreas T. [1 ]
Ikonic, Zoran [4 ]
Capellini, Giovanni [3 ,5 ]
Zhao, Qing-Tai [1 ]
Gruetzmacher, Detlev [1 ]
Buca, Dan [1 ]
机构
[1] Forschungszentrum Julich, PGI 9, D-52428 Julich, Germany
[2] Aarhus Univ, Interdisciplinary Nanosci Ctr iNANO, DK-8000 Aarhus, Denmark
[3] IHP Leibniz Inst Innovat Mikroelekt, D-15236 Frankfurt, Oder, Germany
[4] Univ Leeds, Pollard Inst Sch Elect & Elect Engn, Leeds LS2 9JT, W Yorkshire, England
[5] Univ Roma Tre, Dipartimento Sci, I-00146 Rome, Italy
关键词
GeSn alloy; chemical vapor deposition; isothermal heterostructures; epitaxial growth; optoelectronic applications; EPITAXIAL-GROWTH; HETEROSTRUCTURES; DEPOSITION; ALLOYS; SNCL4; GE; SI;
D O I
10.1021/acsaelm.3c00112
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Epitaxy of semiconductor-based quantum well structures is a challenging task since it requires precise control of the deposition at the submonolayer scale. In the case of Ge1-xSnx alloys, the growth is particularly demanding since the lattice strain and the process temperature greatly impact the composition of the epitaxial layers. In this paper, the realization of high-quality pseudomorphic Ge1-xSnx layers with Sn content ranging from 6 at. % up to 15 at. % using isothermal processes in an industry-compatible reduced-pressure chemical vapor deposition reactor is presented. The epitaxy of Ge1-xSnx layers has been optimized for a standard process offering a high Sn concentration at a large process window. By varying the N2 carrier gas flow, isothermal heterostructure designs suitable for quantum transport and spintronic devices are obtained.
引用
收藏
页码:2268 / 2275
页数:8
相关论文
共 47 条
  • [1] Al-Kabi S., J ELECTRON MATER
  • [2] Assali S., 2021, LIGHT HOLE QUANTUM W
  • [3] GeSn growth kinetics in reduced pressure chemical vapor deposition from Ge2H6 and SnCl4
    Aubin, J.
    Hartmann, J. M.
    [J]. JOURNAL OF CRYSTAL GROWTH, 2018, 482 : 30 - 35
  • [4] Lattice constant and substitutional composition of GeSn alloys grown by molecular beam epitaxy
    Bhargava, Nupur
    Coppinger, Matthew
    Gupta, Jay Prakash
    Wielunski, Leszek
    Kolodzey, James
    [J]. APPLIED PHYSICS LETTERS, 2013, 103 (04)
  • [5] Simulation of High-Efficiency Resonant-Cavity-Enhanced GeSn Single-Photon Avalanche Photodiodes for Sensing and Optical Quantum Applications
    Chen, Qimiao
    Wu, Shaoteng
    Zhang, Lin
    Fan, Weijun
    Tan, Chuan Seng
    [J]. IEEE SENSORS JOURNAL, 2021, 21 (13) : 14789 - 14798
  • [6] Room temperature optically pumped GeSn microdisk lasers
    Chretien, J.
    Thai, Q. M.
    Frauenrath, M.
    Casiez, L.
    Chelnokov, A.
    Reboud, V.
    Hartmann, J. M.
    El Kurdi, M.
    Pauc, N.
    Calvo, V.
    [J]. APPLIED PHYSICS LETTERS, 2022, 120 (05)
  • [7] Investigation of GeSn Strain Relaxation and Spontaneous Composition Gradient for Low-Defect and High-Sn Alloy Growth
    Dou, Wei
    Benamara, Mourad
    Mosleh, Aboozar
    Margetis, Joe
    Grant, Perry
    Zhou, Yiyin
    Al-Kabi, Sattar
    Du, Wei
    Tolle, John
    Li, Baohua
    Mortazavi, Mansour
    Yu, Shui-Qing
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [8] Fu Y., 1996, HALL FACTOR STRAINEE
  • [9] DECOMPOSITION MECHANISMS OF SIH2, SIH3, AND SIH4 SPECIES ON SI(100)-(2X1)
    GATES, SM
    GREENLIEF, CM
    BEACH, DB
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1990, 93 (10) : 7493 - 7503
  • [10] Amorphous inclusions during Ge and GeSn epitaxial growth via chemical vapor deposition
    Gencarelli, F.
    Shimura, Y.
    Kumar, A.
    Vincent, B.
    Moussa, A.
    Vanhaeren, D.
    Richard, O.
    Bender, H.
    Vandervorst, W.
    Caymax, M.
    Loo, R.
    Heyns, M.
    [J]. THIN SOLID FILMS, 2015, 590 : 163 - 169