(0,2) Mirror Symmetry on Homogeneous Hopf Surfaces

被引:3
作者
Alvarez-Consul, Luis [1 ]
de la Hera, Andoni de Arriba [1 ,2 ]
Garcia-Fernandez, Mario [3 ,4 ]
机构
[1] UCM, Inst Ciencias Matemat, UAM, CSIC,UC3M, Nicolas Cabrera 13-15, Madrid 28049, Spain
[2] Univ Complutense Madrid, Nicolas Cabrera 13-15, Madrid 28049, Spain
[3] Univ Autonoma Madrid, Dep Matemat, Ciudad Univ Cantoblanco, Madrid 28049, Spain
[4] UCM, Inst Ciencias Matemat, CSIC, UAM,UC3M, Ciudad Univ Cantoblanco, Madrid 28049, Spain
关键词
CALABI-YAU MANIFOLDS; STROMINGER SYSTEM; INVARIANT SOLUTIONS; KILLING SPINORS; RHAM COMPLEX; T-DUALITY; SUPERSYMMETRY; ALGEBRAS; GEOMETRY;
D O I
10.1093/imrn/rnad016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we find the first examples of (0,2) mirror symmetry on compact non-Kahler complex manifolds. For this, we follow Borisov's approach to mirror symmetry using vertex algebras and the chiral de Rham complex. Our examples of (0,2) mirrors are given by pairs of Hopf surfaces endowed with a Bismut-flat pluriclosed metric. Requiring that the geometry is homogeneous, we reduce the problem to the study of Killing spinors on a quadratic Lie algebra and the construction of embeddings of the N=2 superconformal vertex algebra in the superaffine vertex algebra, combined with topological T-duality.
引用
收藏
页码:1211 / 1298
页数:88
相关论文
共 61 条
[1]  
Adams A., 2003, Adv. Theor. Math. Phys, V7, P865
[2]   On a Complex-Symplectic Mirror Pair [J].
Aldi, Marco ;
Heluani, Reimundo .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (22) :6934-6960
[3]  
Alekseev A., 2001, DERIVED BRACKETS COU
[4]   On Bott-Chern cohomology of compact complex surfaces [J].
Angella, Daniele ;
Dloussky, Georges ;
Tomassini, Adriano .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (01) :199-217
[5]  
Barron K., 2000, REPRESENTATIONS QUAN, P9
[6]   Supersymmetry of the chiral de Rham complex [J].
Ben-Zvi, David ;
Heluani, Reimundo ;
Szczesny, Matthew .
COMPOSITIO MATHEMATICA, 2008, 144 (02) :503-521
[7]   Vertex algebras and mirror symmetry [J].
Borisov, LA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 215 (03) :517-557
[8]   Elliptic genera of toric varieties and applications to mirror symmetry [J].
Borisov, LA ;
Libgober, A .
INVENTIONES MATHEMATICAE, 2000, 140 (02) :453-485
[9]   On CY-LG correspondence for (0,2) toric models [J].
Borisov, Lev A. ;
Kaufmann, Ralph M. .
ADVANCES IN MATHEMATICS, 2012, 230 (02) :531-551
[10]   T-duality:: Topology change from H-flux [J].
Bouwknegt, P ;
Evslin, J ;
Mathai, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 249 (02) :383-415