Numerical Optimization of Triple-Phase Components in Order-Structured Cathode Catalyst Layer of a Proton Exchange Membrane Fuel Cell

被引:0
|
作者
Ye, Miao [1 ]
Rong, Long [1 ]
Ma, Xu [1 ]
Yang, Weiwei [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Key Lab Thermofluid Sci & Engn MOE, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
proton exchange membrane fuel cell; ordered catalyst layer; triple-phase content; cell performance; HIGH-CURRENT DENSITY; PERFORMANCE; ELECTRODES; SIMULATION; ARRAYS; PEMFC;
D O I
10.3390/en16041623
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Proton exchange membrane fuel cell (PEMFC) is generally regarded as a promising energy conversion device due to its low noise, high efficiency, low pollution, and quick startup. The design of the catalyst layer structure is crucial in boosting cell performance. The traditional catalyst layer has high oxygen transmission resistance, low utilization rate of Pt particles and high production cost. In this study, we offer a sub-model for an order-structured cathode catalyst layer coupled to a three-dimensional (3D) two-phase macroscopic PEMFC model. In the sub-model of the cathode catalyst layer, it is assumed that carbon nanowires are vertically arranged into the catalyst layer structure, platinum particles and ionomers adhere to the surface, and water films cover the cylindrical electrode. The impacts of triple-phase contents in the catalyst layer on cell performance are investigated and discussed in detail after the model has been validated using data from existing studies. The results show that when the triple-phase contents ratio of the order-structured cathode catalyst layer is the best, the overall cell power density of the cell can be maximized, that is, the Pt loading of 0.15 mg cm(-2), carbon loading of 1.0 mg cm(-2), and ionomer volume fraction of 0.2. The above study may provide guidance for constructing the PEMFC catalyst layer with high catalyst utilization and high performance.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A multiscale model for proton exchange membrane fuel cells with order-structured catalyst layers
    Lin, P. Z.
    Sun, J.
    Wu, M. C.
    Zhao, T. S.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 195
  • [2] Optimization of cathode microporous layer materials for proton exchange membrane fuel cell
    Li, Bing
    Xie, Meng
    Ji, Hao
    Chu, Tiankuo
    Yang, Daijun
    Ming, Pingwen
    Zhang, Cunman
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (27) : 14674 - 14686
  • [3] Revealing the dynamic temperature of the cathode catalyst layer inside proton exchange membrane fuel cell by experimental measurements and numerical analysis
    Wang, Qianqian
    Tang, Fumin
    Li, Xiang
    Zheng, Jim P.
    Hao, Liang
    Cui, Guomin
    Ming, Pingwen
    CHEMICAL ENGINEERING JOURNAL, 2023, 463
  • [4] Proton-Conducting Polymer Wrapped Cathode Catalyst for Enhancing Triple-Phase Boundaries in Proton Exchange Membrane Fuel Cells
    Garapati, Meenakshi Seshadhri
    Nechiyil, Divya
    Joulie, Sebastien
    Bacsa, Revathi R.
    Sundara, Ramaprabhu
    Bacsa, Wolfgang
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (01): : 627 - 638
  • [5] Cathode catalyst layer design for proton exchange membrane fuel cells
    Therdthianwong, Apichai
    Saenwiset, Pornrumpa
    Therdthianwong, Supaporn
    FUEL, 2012, 91 (01) : 192 - 199
  • [6] Nanofiber Cathode Catalyst Layer Model for a Proton Exchange Membrane Fuel Cell
    Dever, Dennis O.
    Cairncross, Richard A.
    Elabd, Yossef A.
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2014, 11 (04):
  • [7] Reconstruction and optimization of catalyst layer of high temperature proton exchange membrane fuel cell
    Xia, Lingchao
    Tao, Shi
    Ni, Meng
    Wang, Yang
    Wu, Chengru
    Xu, Qidong
    Dai, Yawen
    Cheng, Chun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (84) : 35778 - 35789
  • [8] Numerical study of triple-phase boundary length in high-temperature proton exchange membrane fuel cell
    Xia, Lingchao
    Ni, Meng
    Dai, Yawen
    Zheng, Keqing
    Li, Mengxiao
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (02) : 1998 - 2010
  • [9] Engineering Triple-Phase Boundary in Pt Catalyst Layers for Proton Exchange Membrane Fuel Cells
    Li, Yi
    Wu, Zirui
    Wang, Cheng
    Yu, Xiwen
    Gao, Wanguo
    Wang, Bing
    Wu, Congping
    Yao, Yingfang
    Yang, Juan
    Zou, Zhigang
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (19)
  • [10] Pore network modeling of cathode catalyst layer of proton exchange membrane fuel cell
    Wu, Rui
    Liao, Qiang
    Zhu, Xun
    Wang, Hong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (15) : 11255 - 11267