CLIMBra - Climate Change Dataset for Brazil

被引:32
作者
Ballarin, Andre Simoes [1 ]
Sone, Jullian Souza [1 ]
Gesualdo, Gabriela Chiquito [1 ]
Schwamback, Dimaghi [1 ]
Reis, Alan [1 ]
Almagro, Andre [2 ]
Wendland, Edson Cezar [1 ]
机构
[1] Univ Sao Paulo, Sao Carlos Sch Engn, Dept Hydraul & Sanitat, CxP 359, BR-13566590 Sao Carlos, SP, Brazil
[2] Univ Fed Mato Grosso do Sul, Fac Engn Architecture & Urbanism & Geog, CxP 549, BR-79070900 Campo Grande, MS, Brazil
基金
巴西圣保罗研究基金会;
关键词
EARTH SYSTEM MODEL; INTERCOMPARISON PROJECT SCENARIOMIP; BIAS CORRECTION; PRECIPITATION; VARIABILITY; SIMULATION; VERSION;
D O I
10.1038/s41597-023-01956-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
General Circulation and Earth System Models are the most advanced tools for investigating climate responses to future scenarios of greenhouse gas emissions, playing the role of projecting the climate throughout the century. Nevertheless, climate projections are model-dependent and may show systematic biases, requiring a bias correction for any further application. Here, we provide a dataset based on an ensemble of 19 bias-corrected CMIP6 climate models projections for the Brazilian territory based on the SSP2-4.5 and SSP5-8.5 scenarios. We used the Quantile Delta Mapping approach to bias-correct daily time-series of precipitation, maximum and minimum temperature, solar net radiation, near-surface wind speed, and relative humidity. The bias-corrected dataset is available for both historical (1980-2013) and future (2015-2100) simulations at a 0.25 degrees x0.25 degrees spatial resolution. Besides the gridded product, we provide area-averaged projections for 735 catchments included in the Catchments Attributes for Brazil (CABra) dataset. The dataset provides important variables commonly used in environmental and hydroclimatological studies, paving the way for the development of high-quality research on climate change impacts in Brazil.
引用
收藏
页数:16
相关论文
共 80 条
[11]   Downscaling Extremes: An Intercomparison of Multiple Methods for Future Climate [J].
Buerger, G. ;
Sobie, S. R. ;
Cannon, A. J. ;
Werner, A. T. ;
Murdock, T. Q. .
JOURNAL OF CLIMATE, 2013, 26 (10) :3429-3449
[12]   Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes? [J].
Cannon, Alex J. ;
Sobie, Stephen R. ;
Murdock, Trevor Q. .
JOURNAL OF CLIMATE, 2015, 28 (17) :6938-6959
[13]   The NUIST Earth System Model (NESM) version 3: description and preliminary evaluation [J].
Cao, Jian ;
Wang, Bin ;
Yang, Young-Min ;
Ma, Libin ;
Li, Juan ;
Sun, Bo ;
Bao, Yan ;
He, Jie ;
Zhou, Xiao ;
Wu, Liguang .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2018, 11 (07) :2975-2993
[14]   Testing bias adjustment methods for regional climate change applications under observational uncertainty and resolution mismatch [J].
Casanueva, Ana ;
Herrera, Sixto ;
Iturbide, Maialen ;
Lange, Stefan ;
Jury, Martin ;
Dosio, Alessandro ;
Maraun, Douglas ;
Gutierrez, Jose M. .
ATMOSPHERIC SCIENCE LETTERS, 2020, 21 (07)
[15]   Global Mean Climate and Main Patterns of Variability in the CMCC-CM2 Coupled Model [J].
Cherchi, A. ;
Fogli, P. G. ;
Lovato, T. ;
Peano, D. ;
Iovino, D. ;
Gualdi, S. ;
Masina, S. ;
Scoccimarro, E. ;
Materia, S. ;
Bellucci, A. ;
Navarra, A. .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2019, 11 (01) :185-209
[16]  
Chou S., 2014, Am J Clim Change, V3, P438, DOI [DOI 10.4236/AJCC.2014.35039, 10.4236/ajcc.2014.35039]
[17]   On the need for bias correction of regional climate change projections of temperature and precipitation [J].
Christensen, Jens H. ;
Boberg, Fredrik ;
Christensen, Ole B. ;
Lucas-Picher, Philippe .
GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (20)
[18]   Characterizing Uncertainty of the Hydrologic Impacts of Climate Change [J].
Clark, Martyn P. ;
Wilby, Robert L. ;
Gutmann, Ethan D. ;
Vano, Julie A. ;
Gangopadhyay, Subhrendu ;
Wood, Andrew W. ;
Fowler, Hayley J. ;
Prudhomme, Christel ;
Arnold, Jeffrey R. ;
Brekke, Levi D. .
CURRENT CLIMATE CHANGE REPORTS, 2016, 2 (02) :55-64
[19]   Nonstationary extreme precipitation in Brazil [J].
Cortez, Bianca Nespoli ;
Pires, Gabrielle Ferreira ;
Avila-Diaz, Alvaro ;
Fonseca, Humberto Paiva ;
Oliveira, Lais Rosa .
HYDROLOGICAL SCIENCES JOURNAL, 2022, 67 (09) :1372-1383
[20]  
Dalagnol Ricardo, 2022, Climate Resilience and Sustainability, V1, DOI 10.1002/cli2.15