Feature Selection Using Diversity-Based Multi-objective Binary Differential Evolution

被引:37
|
作者
Wang, Peng [1 ]
Xue, Bing [1 ]
Liang, Jing [2 ,3 ]
Zhang, Mengjie [1 ]
机构
[1] Victoria Univ Wellington, Sch Engn & Comp Sci, Wellington 6012, New Zealand
[2] Henan Inst Technol, Sch Elect Engn & Automat, Xinxiang 453000, Peoples R China
[3] Zhengzhou Univ, Sch Elect & Informat Engn, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
multi-objective optimization; differential evolution; feature selection; population diversity; GENETIC ALGORITHM; OPTIMIZATION; RELEVANCE;
D O I
10.1016/j.ins.2022.12.117
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
By identifying relevant features from the original data, feature selection methods can maintain or improve the classification accuracy and reduce the dimensionality. Recently, many multi -objective evolutionary methods have been proposed for feature selection. However, effectively handling the trade-offs between convergence and diversity of the non-dominated solutions re-mains a major challenge, especially for high-dimensional datasets. To cover this issue, this work studies a diversity-based multi-objective differential evolution approach to feature selection. During the environmental selection process, each of the solutions in the candidate pool will have a diversity score, and solutions with large diversity score values will be preferred so as to improve the population diversity. To reduce the search space, irrelevant and weakly relevant features are detected and removed in the proposed method. A new binary mutation operator using the neighborhood information of individuals is also proposed, aiming to produce better feature subsets. Experimental results on 14 datasets with varying difficulties show that the proposed feature selection method can obtain significantly better feature selection performance than cur-rent popular multi-objective feature selection methods.
引用
收藏
页码:586 / 606
页数:21
相关论文
共 50 条
  • [31] A multi-objective genetic algorithm for text feature selection using the relative discriminative criterion
    Labani, Mahdieh
    Moradi, Parham
    Jalili, Mahdi
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 149
  • [32] Multi-objective Service Compositon Optimization Using Differential Evolution
    Zhou, Yingqiang
    Zhang, Changsheng
    Zhang, Bin
    2015 11TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2015, : 233 - 238
  • [33] A multi-objective feature selection method based on bacterial foraging optimization
    Niu, Ben
    Yi, Wenjie
    Tan, Lijing
    Geng, Shuang
    Wang, Hong
    NATURAL COMPUTING, 2021, 20 (01) : 63 - 76
  • [34] A multi-objective algorithm for multi-label filter feature selection problem
    Dong, Hongbin
    Sun, Jing
    Li, Tao
    Ding, Rui
    Sun, Xiaohang
    APPLIED INTELLIGENCE, 2020, 50 (11) : 3748 - 3774
  • [35] Multi-objective Evolutionary Feature Selection
    Kundu, Partha Pratim
    Mitra, Sushmita
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PROCEEDINGS, 2009, 5909 : 74 - 79
  • [36] Multi-objective binary grey wolf optimization for feature selection based on guided mutation strategy
    Li, Xiaobo
    Fu, Qiyong
    Li, Qi
    Ding, Weiping
    Lin, Feilong
    Zheng, Zhonglong
    APPLIED SOFT COMPUTING, 2023, 145
  • [37] BINARY PSO AND ROUGH SET THEORY FOR FEATURE SELECTION: A MULTI-OBJECTIVE FILTER BASED APPROACH
    Xue, Bing
    Cervante, Liam
    Shang, Lin
    Browne, Will
    Zhang, Mengjie
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2014, 13 (02)
  • [38] A Binary Multi-objective Grey Wolf Optimization for Feature Selection
    Jiang, Yongqi
    Jin, Chu
    Zhang, Quan
    Hu, Biao
    Tang, Zhenzhou
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT II, KSEM 2024, 2024, 14885 : 395 - 406
  • [39] A Multi-Objective Multi-Label Feature Selection Algorithm Based on Shapley Value
    Dong, Hongbin
    Sun, Jing
    Sun, Xiaohang
    ENTROPY, 2021, 23 (08)
  • [40] Multi-objective feature selection for warfarin dose prediction
    Sohrabi, Mohammad Karim
    Tajik, Alireza
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2017, 69 : 126 - 133