Feature Selection Using Diversity-Based Multi-objective Binary Differential Evolution

被引:37
|
作者
Wang, Peng [1 ]
Xue, Bing [1 ]
Liang, Jing [2 ,3 ]
Zhang, Mengjie [1 ]
机构
[1] Victoria Univ Wellington, Sch Engn & Comp Sci, Wellington 6012, New Zealand
[2] Henan Inst Technol, Sch Elect Engn & Automat, Xinxiang 453000, Peoples R China
[3] Zhengzhou Univ, Sch Elect & Informat Engn, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
multi-objective optimization; differential evolution; feature selection; population diversity; GENETIC ALGORITHM; OPTIMIZATION; RELEVANCE;
D O I
10.1016/j.ins.2022.12.117
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
By identifying relevant features from the original data, feature selection methods can maintain or improve the classification accuracy and reduce the dimensionality. Recently, many multi -objective evolutionary methods have been proposed for feature selection. However, effectively handling the trade-offs between convergence and diversity of the non-dominated solutions re-mains a major challenge, especially for high-dimensional datasets. To cover this issue, this work studies a diversity-based multi-objective differential evolution approach to feature selection. During the environmental selection process, each of the solutions in the candidate pool will have a diversity score, and solutions with large diversity score values will be preferred so as to improve the population diversity. To reduce the search space, irrelevant and weakly relevant features are detected and removed in the proposed method. A new binary mutation operator using the neighborhood information of individuals is also proposed, aiming to produce better feature subsets. Experimental results on 14 datasets with varying difficulties show that the proposed feature selection method can obtain significantly better feature selection performance than cur-rent popular multi-objective feature selection methods.
引用
收藏
页码:586 / 606
页数:21
相关论文
共 50 条
  • [1] A Multi-objective Feature Selection Based on Differential Evolution
    Zhang, Yong
    Rong, Miao
    Gong, Dunwei
    FOURTH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES (CCAIS 2015), 2015, : 302 - 306
  • [2] Binary differential evolution with self-learning for multi-objective feature selection
    Zhang, Yong
    Gong, Dun-wei
    Gao, Xiao-zhi
    Tian, Tian
    Sun, Xiao-yan
    INFORMATION SCIENCES, 2020, 507 : 67 - 85
  • [3] A Novel Multi-objective Binary Differential Evolution Algorithm for Multi-label Feature Selection
    Bidgoli, Azam Asilian
    Ebrahimpour-Komleh, Hossein
    Rahnamayan, Shahryar
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 1588 - 1595
  • [4] Multi-Objective Differential Evolution for feature selection in Facial Expression Recognition systems
    Mlakar, Uros
    Fister, Iztok
    Brest, Janez
    Potocnik, Bozidar
    EXPERT SYSTEMS WITH APPLICATIONS, 2017, 89 : 129 - 137
  • [5] Computational Cost Reduction in Multi-Objective Feature Selection Using Permutational-Based Differential Evolution
    Barradas-Palmeros, Jesus-Arnulfo
    Mezura-Montes, Efren
    Rivera-Lopez, Rafael
    Acosta-Mesa, Hector-Gabriel
    Marquez-Grajales, Aldo
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2024, 29 (04)
  • [6] Reinforcement learning-based multi-objective differential evolution algorithm for feature selection
    Yu, Xiaobing
    Hu, Zhengpeng
    Luo, Wenguan
    Xue, Yu
    INFORMATION SCIENCES, 2024, 661
  • [7] Fuzzy kernel feature selection with multi-objective differential evolution algorithm
    Hancer, Emrah
    CONNECTION SCIENCE, 2019, 31 (04) : 323 - 341
  • [8] Elitism based Multi-Objective Differential Evolution for feature selection: A filter approach with an efficient redundancy measure
    Nayak, Subrat Kumar
    Rout, Pravat Kumar
    Jagadev, Alok Kumar
    Swarnkar, Tripti
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2020, 32 (02) : 174 - 187
  • [9] Multi-objective Feature Selection in Classification: A Differential Evolution Approach
    Xue, Bing
    Fu, Wenlong
    Zhang, Mengjie
    SIMULATED EVOLUTION AND LEARNING (SEAL 2014), 2014, 8886 : 516 - 528
  • [10] Binary Multi-Objective Grey Wolf Optimizer for Feature Selection in Classification
    Al-Tashi, Qasem
    Abdulkadir, Said Jadid
    Rais, Helmi Md
    Mirjalili, Seyedali
    Alhussian, Hitham
    Ragab, Mohammed G.
    Alqushaibi, Alawi
    IEEE ACCESS, 2020, 8 : 106247 - 106263