N-Doped Hollow Carbon Sphere and Polyhedral Carbon Composite Supported Pt/Fe Nanoparticles as Highly Efficient Cathodic Catalysts of Proton-Exchange Membrane Fuel Cells

被引:6
|
作者
Wang, Yuebing [1 ]
Tan, Guanghua [1 ]
Yi, Qingfeng [1 ,2 ]
Fang, Can [1 ]
Yi, Ruowei [3 ]
机构
[1] Hunan Univ Sci & Technol, Sch Chem & Chem Engn, Xiangtan 411201, Hunan, Peoples R China
[2] Hunan Prov Key Lab Adv Mat New Energy Storage & Co, Xiangtan 411201, Peoples R China
[3] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, CAS Ctr Excellence Nanosci, i Lab, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
proton-exchange membrane fuel cells; oxygen reduction reaction; hollow carbon spheres; metal-organic framework; carbon nanotubes; OXYGEN REDUCTION REACTION; PERFORMANCE; DURABILITY; BLACK; ELECTROCATALYSTS; HYBRID; ACHIEVEMENTS; CHALLENGES; NANOTUBES; GRAPHENE;
D O I
10.1021/acsaem.2c02838
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With the growing energy crisis, people urgently need green energy sources to replace fossil ones. As a zero-emission clean energy source, the proton-exchange membrane fuel cell (PEMFC) has received growing attention from researchers due to its broad practical application. However, so far only noble metal Pt can be used as a mature cathodic catalyst for PEMFC to effectively promote the slow kinetic process of the oxygen reduction reaction (ORR). Herein, a low Pt-loading carbon-based catalyst (pCN@NHCS-Fe/Pt-280) with hollow carbon spheres (HCSs), metal-organic frameworks (MOFs), and carbon nanotubes (CNTs) structure was synthesized by the thermal reduction of platinum acetylacetonate and pCN@NHCS-Fe. Compared with the benchmark Pt/C catalyst, pCN@NHCS-Fe/Pt280 presents low cost, and its ORR onset potential (Eonset = 0.971 VRHE) and half-wave potential (E1/2 = 0.883 VRHE) in acidic media are comparable to those of 40% Pt/C (Eonset = 0.965 VRHE, E1/2 = 0.883 VRHE). In the durability test for ORR, its current retention percentage (92.3%) is still higher than 40% Pt/C (86.7%) after 10 000 s of the constant potential test, and its cyclic voltammetry (CV) and linear scan voltammetry (LSV) profiles after 500 cycles exhibit outstanding stability. Moreover, pCN@NHCS-Fe/Pt-280 quickly recovers to 79.1% of the initial value after adding methanol, while 40% Pt/C can recover only to 72.3%, indicating a superior ability in antialcohol oxidation. In addition, the maximum power density of pCN@NHCS-Fe/Pt-280 (518.7 mW cm-2) as the cathode catalyst of PEMFC in the H2-air cell test is also higher than that of Pt/C (515.3 mW cm-2), while its power density is lower than that of Pt/C in the H2-O2 cell test at different pressures due to the high-temperature influence at high current densities. This work provides a valuable idea for the design of multistructured (HCSs, MOFs, CNTs, etc.) electrocatalysts and a feasible strategy for the development of low-Pt-loaded ORR catalysts.
引用
收藏
页码:1228 / 1238
页数:11
相关论文
共 50 条
  • [21] Recent Progress in Proton-Exchange Membrane Fuel Cells Based on Metal-Nitrogen-Carbon Catalysts
    Ding, Liang
    Tang, Tang
    Hu, Jin-Song
    ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (09)
  • [22] Enhanced activity and durability of Pt nanoparticles supported on reduced graphene oxide for oxygen reduction catalysts of proton exchange membrane fuel cells
    Kim, Jemin
    Kim, Sun-, I
    Jo, Seung Geun
    Hong, Na Eun
    Ye, Bora
    Lee, Sangkyu
    Dow, Hwan Soo
    Lee, Duck Hyun
    Lee, Jung Woo
    CATALYSIS TODAY, 2020, 352 : 10 - 17
  • [23] Effect of N-doped carbon coatings on the durability of highly loaded platinum and alloy catalysts with different carbon supports for polymer electrolyte membrane fuel cells
    Ahn, Chi-Yeong
    Hwang, Wonchan
    Lee, Hyunjoon
    Kim, Sungjun
    Park, Ji Eun
    Kim, Ok-Hee
    Her, Min
    Cho, Yong-Hun
    Sung, Yung-Eun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (21) : 10070 - 10081
  • [24] Highly Dispersed Pt Nanoparticles Embedded in N-Doped Porous Carbon for Efficient Hydrogen Evolution
    Dong, Yuan
    Ying, Jie
    Xiao, Yu-Xuan
    Chen, Jiang-Bo
    Yang, Xiao-Yu
    CHEMISTRY-AN ASIAN JOURNAL, 2021, 16 (14) : 1878 - 1881
  • [25] Templated growth of Fe/N/C catalyst on hierarchically porous carbon for oxygen reduction reaction in proton exchange membrane fuel cells
    Zhan, Yunfeng
    Zeng, Hongbin
    Xie, Fangyan
    Zhang, Hao
    Zhang, Weihong
    Jin, Yanshuo
    Zhang, Yueli
    Chen, Jian
    Meng, Hui
    JOURNAL OF POWER SOURCES, 2019, 431 : 31 - 39
  • [26] Carbon-supported Pd-Pt cathode electrocatalysts for proton exchange membrane fuel cells
    Tang, Yongfu
    Zhang, Huamin
    Zhong, Hexiang
    Xu, Ting
    Jin, Hong
    JOURNAL OF POWER SOURCES, 2011, 196 (07) : 3523 - 3529
  • [27] Core-Shell Structured Fe-N-C Catalysts with Enriched Iron Sites inSurface Layers for Proton-Exchange Membrane Fuel Cells
    Zhu, Jinhui
    Fang, Ziyu
    Yang, Xiaoxuan
    Chen, Mengjie
    Chen, Zhenying
    Qiu, Feng
    Wang, Mengjia
    Liu, Pan
    Xu, Qing
    Zhuang, Xiaodong
    Wu, Gang
    ACS CATALYSIS, 2022, 12 (11) : 6409 - 6417
  • [28] Fe, N-doped graphene-wrapped carbon black nanoparticles as highly efficient catalyst towards oxygen reduction reaction
    Tang, Yibo
    Lei, Ying
    Tong, Kang
    Yang, Tong
    Fu, Tiantian
    Xiang, Yang
    Zhang, Shulin
    Si, Yujun
    Guo, Chaozhong
    APPLIED SURFACE SCIENCE, 2021, 545
  • [29] Electrochemical study of highly durable cathode with Pt supported on ITO-CNT composite for proton exchange membrane fuel cells
    Park, Sehkyu
    Shao, Yuyan
    Viswanathan, Vilayanur V.
    Liu, Jun
    Wang, Yong
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2016, 42 : 81 - 86
  • [30] Confinement of Fe2O3 nanoparticles in the shell of N-doped carbon hollow microsphere for efficient oxygen reduction reaction
    Xiao, Zhourong
    Hou, Fang
    Li, Yueting
    Zhang, Rongrong
    Shen, Guoqiang
    Wang, Li
    Zhang, Xiangwen
    Wang, Qingfa
    Li, Guozhu
    CHEMICAL ENGINEERING SCIENCE, 2019, 207 : 235 - 246